
CFD General Notation System
A User’s Guide To CGNS

Document Version 1.1.8

CGNS Version 2.4.4

Christopher L. Rumsey
NASA Langley Research Center

Diane M. A. Poirier
ICEM CFD Engineering

Robert H. Bush
Pratt & Whitney

Charles E. Towne
NASA Glenn Research Center

Contents

1 INTRODUCTION 1

1.1 What is CGNS? . 1

1.2 Why CGNS? . 1

1.3 What is a CGNS File? . 2

1.4 How this User’s Guide is Organized . 3

2 GETTING STARTED 5

2.1 Structured Grid . 6

2.1.1 Single-Zone Structured Grid . 6

2.1.2 Single-Zone Structured Grid and Flow Solution 14

2.1.3 Single-Zone Structured Grid with Boundary Conditions 22

2.1.4 Multi-Zone Structured Grid with 1-to-1 Connectivity 26

2.2 Unstructured Grid . 32

2.2.1 Single-Zone Unstructured Grid 32

2.2.2 Single-Zone Unstructured Grid and Flow Solution 36

2.2.3 Single-Zone Unstructured Grid with Boundary Conditions 37

3 ADDITIONAL INFORMATION 40

3.1 Convergence History . 40

3.2 Descriptor Nodes . 41

3.3 Dimensional Data . 42

3.4 Nondimensional Data . 44

3.5 Flow Equation Sets . 47

3.6 Time-Dependent Data . 50

3.7 Using Links . 53

4 TROUBLESHOOTING 55

4.1 Handling Errors . 55

4.2 Known Problems . 55

5 FREQUENTLY ASKED QUESTIONS 56

Appendix A. THE ADFEDIT UTILITY 58

Appendix B. EXAMPLE COMPUTER CODES 59

Appendix C. OVERVIEW OF THE SIDS 61

C.1 The Big Picture . 61

C.2 Implementation at the Lower Levels of the Hierarchy 65

C.3 Boundary Conditions . 66

C.4 Zone Connectivity . 67

C.5 Structured Zone Example . 69

Appendix D. GUIDELINE FOR PLOT3D VARIABLES 73

D.1 Dimensional Data . 74

D.2 NormalizedByDimensional Data . 75

D.3 NormalizedByUnknownDimensional Data 76

D.4 Notes . 77

1 INTRODUCTION

This User’s Guide has been written to aid users in the implementation of CGNS (CFD
General Notation System). It is intended as a tutorial: light in content, but heavy in
examples, advice, and guidelines. Readers interested in additional details are referred to
other documents, listed in the references, which are available from the CGNS website
www.cgns.org.

1.1 What is CGNS?

CGNS (CFD General Notation System) originated in 1994 as a joint effort between Boe-
ing and NASA, and has since grown to include many other contributing organizations
worldwide. It is an effort to standardize CFD input and output, including grid (both
structured and unstructured), flow solution, connectivity, BCs, and auxiliary informa-
tion. CGNS is also easily extensible, and allows for file-stamping and user-inserted-
commenting. It employs ADF (Advanced Data Format), a system which creates binary
files that are portable across computer platforms. CGNS also includes a second layer of
software known as the mid-level library, or API (Application Programming Interface),
which eases the implementation of CGNS into existing CFD codes.1

In 1999, control of CGNS was completely transferred to a public forum known as
the CGNS Steering Committee. This Steering Committee is made up of international
representatives from government and private industry. All CGNS software is completely
free and open to anyone (open source). The CGNS standard is also the object of an ISO
standardization effort for fluid dynamics data [6], for release some time in the early to
mid-2000’s.

1.2 Why CGNS?

CGNS will eventually eliminate most of the translator programs now necessary when
working between machines and between CFD codes. Also, it eventually may allow for
the results from one code to be easily restarted using another code. It will hopefully
therefore save a lot of time and money. In particular, it is hoped that future grid-
generation software will generate grids with all connectivity and BC information included
as part of a CGNS database, saving time and avoiding potential costly errors in setting
up this information after-the-fact.

1With the release of CGNS Version 2.4, the mid-level library may be built using either ADF or HDF
(Hierarchical Data Format) as the underlying data format. The remainder of this User’s Guide only
refers to ADF, but at the mid-level library level the differences should be transparent to most users.

1

1.3 What is a CGNS File?

A CGNS file is an entity that is organized (inside the file itself) into a set of “nodes”
in a tree-like structure, in much the same way as directories are organized in the UNIX
environment. 2 The top-most node is referred to as the “root node.” Each node below the
root node is defined by both a name and a label, and may or may not contain information
or data. Each node can also be a “parent” to one or more “child” nodes. A node can
also have as a child node a link to a node elsewhere in the file or to a node in a separate
CGNS file altogether. Links are transparent to the user: the user “sees” linked children
nodes as if they truly exist in the current tree. An example of a CGNS tree-like structure
is shown in Fig. 1.

root node

Name
Label
Data

Name
Label
Data

Name
Label
Data

Name
Label
Data

Name
Label
Data

Name
Label
Data

Name
Label
Data

(link)

Name
Label
Data

Figure 1: Example CGNS tree-like structure.

In order for any user to be able to interpret a CGNS file, its nodes must be assembled
according to particular rules. For example, Fig. 2 shows a simple example of a tree-like
structure that organizes some animals into categories according to rules that most of us
are very familiar with. (Note that this figure is different from Fig. 1 in that no “Labels”
or “Data” are used, only “Names.”) The categories get narrower and narrower in their
scope as you traverse lower in the tree. The broadest category here is “Animals,” and the
tree narrows all the way down to particular dogs (two “Fido”s, a “Spot,” and a “Ginger”).
Knowing ahead of time how this tree is organized allows you to quickly and easily access
whatever particular information from the tree that you may be interested in. If someone
else were to organize these same animals in a completely different way, according to
different rules, then it would be difficult for you to access the desired information without
spending a lot of time searching and studying the tree.

2Strictly speaking, because links may be used to store information in multiple files, there is no notion
of a CGNS file, only of a CGNS database implemented within one or more files. However, throughout

2

root node

Animals

Fish

Dogs

Mammals

Cats

Collies Greyhounds Beagles

"Fido" "Spot" "Fido" "Ginger"

Figure 2: Simple tree-like structure that categorizes some animals.

The particular rules for organizing CGNS files for aerodynamic data, which allow
users to easily access desired information, are described in the Standard Interface Data
Structures (SIDS) document [1]. Because CGNS files are binary files, they cannot be
viewed by the user with standard UNIX ASCII-editing tools. The utility adfedit was
created to allow users to easily view CGNS files. It is briefly described in Appendix A.

1.4 How this User’s Guide is Organized

The main content in this User’s Guide is located in section 2, where several simple
examples are given for both structured and unstructured grids. This section covers the
basics that most users want or need to learn in order to get started using CGNS. It is
recommended that the section on structured grids be read first, in its entirety, even if the
user is only interested in unstructured grid applications. Some additional information
is covered in section 3; these issues are felt to be important (i.e., most users will want
to eventually include them), but they are not as crucial as the basic items covered in
section 2. Finally, sections 4 and 5 briefly cover troubleshooting and frequently asked
questions, respectively.

Note that all of the codes and code segments given in this document are available

this document the two phrases are used interchangeably.

3

as complete codes from the CGNS site at SourceForge (sourceforge.net/projects/cgns).
The names of these codes and their functions are listed in Appendix B. Also note that
not all CGNS capabilities are covered in this document. It is meant to be a fairly simple
introductory guide only.

4

2 GETTING STARTED

The rules and conventions governing how the nodes in a CGNS file are organized, in-
cluding their names and labels, are specified in the SIDS document [1], with additional
details in [2] [3]. These documents also specify in detail how CFD information is to be
stored within the nodes in a standardized fashion so that other users can easily access
and read it. When a CGNS file strictly adheres to the rules given in the SIDS document,
it is said to be “SIDS-compliant.” A CGNS file must be SIDS-compliant in order for
other users to be able to properly interpret it. A brief overview of the most commonly
used aspects of the SIDS is given in Appendix C.

However, to get started with CGNS, it is not necessary for the user to fully understand
the SIDS document or Appendix C. The mid-level, or API calls have been created to
aid users in writing and reading CGNS files that are SIDS-compliant. 3 Using the API,
most CFD data of interest to the majority of users can be written into or read from a
CGNS file very easily with only an elementary understanding of the SIDS.

In the following sections, we give detailed instructions on how to create typical CGNS
files or portions of files. These instructions are given in the form of simple examples.
They make use of the mid-level API calls, although not all API calls are covered in this
document (a complete list of available API calls can be found in [5]). We recommend that
the user read through the examples in this section in order, because some information in
the later sections depends on being familiar with information given in the earlier ones.
Hopefully, users should be able to easily extend these simple examples to their own
applications. Additional applications are covered in section 3. For those users already
familiar with the PLOT3D format for CFD data [7], we include a detailed description on
reading and writing PLOT3D-type variables in a CGNS file in Appendix D.

Also note that we have delayed the discussion of units and nondimensionalization
until section 3. For now, all examples simply store and retrieve pure numbers, and it
is assumed that the user knows what the dimensions or nondimensionalizations of each
variable are.

3There are currently two levels of programming access to CGNS. The lowest level consists of ADF-
level calls. These calls perform the most basic functions, such as creating a child node, writing data,
reading data, etc. These functions always begin with the characters “ADF.” However, these low-level
calls know nothing at all about the SIDS, so the user is responsible for putting data in the correct
place, to make the CGNS file SIDS-compliant. The mid-level, or API calls, which always begin with the
characters “cg ”, were written with knowledge of the SIDS. Therefore, it is easier to adhere to the SIDS
standards when writing a CGNS file using the API calls, and some checks for SIDS-compliance are also
made by the API calls when accessing a CGNS file (SIDS compliance is not guaranteed, but the API
calls go a long way toward facilitating it). The API calls also drastically shorten the calling sequences
necessary to perform many of the functions needed to create and read CGNS files.

5

2.1 Structured Grid

This first section gives several structured grid examples, whereas section 2.2 gives un-
structured grid examples. However, we recommend that section 2.1 be read first, in its
entirety, even if the user is only interested in unstructured grid applications. This is
because much of the organization of the CGNS files is identical for both grid types, and
later sections of this document assume that the user is familiar with information given
in earlier sections.

2.1.1 Single-Zone Structured Grid

This first example is for a very simple 3-D Cartesian grid of size 21 × 17 × 9. The grid
points themselves are created using the following FORTRAN code snippet:

——————————————————————–

do k=1,nk

do j=1,nj

do i=1,ni

x(i,j,k)=float(i-1)

y(i,j,k)=float(j-1)

z(i,j,k)=float(k-1)

enddo

enddo

enddo

——————————————————————–

where ni=21, nj=17, and nk=9. A picture of the grid is shown in Fig. 3.

X

Y

Z

Figure 3: Simple Cartesian structured grid.

6

A complete FORTRAN code that creates this grid and uses API calls to write it to a
CGNS file called grid.cgns is shown here (note that a FORTRAN line continuation is
denoted by a +). This (and all later) coded examples are available from the CGNS site
at SourceForge (sourceforge.net/projects/cgns). See Appendix B.

——————————————————————–

program write grid str

c

c Creates simple 3-D structured grid and writes it to a

c CGNS file.

c

c This program uses the fortran convention that all

c variables beginning with the letters i-n are integers,

c by default, and all others are real

c

c UNIX compilation (IRIX 5.3 or higher with mips4 64 option)

c for this program is:

c f90 -r8 -64 write grid str.f CGNSLib/lib/libcgns.mips4 64.a

c (CGNSLib/lib/ is the location where the compiled

c library libcgns.mips4 64.a is located)

c (Note it is compiled double precision because RealDouble

c is used below)

c

c must include path to cgnslib f.h file:

include ’CGNSLib/cgnslib f.h’

c dimension statements (note that tri-dimensional arrays

c x,y,z must be dimensioned exactly as (21,17,N) (N>=9)

c for this particular case or else they will be written to

c the CGNS file incorrectly! Other options are to use 1-D

c arrays, use dynamic memory, or pass index values to a

c subroutine and dimension exactly there):

dimension x(21,17,9),y(21,17,9),z(21,17,9)

dimension isize(3,3)

character basename*32,zonename*32

c

c create gridpoints for simple example:

ni=21

nj=17

nk=9

do k=1,nk

do j=1,nj

do i=1,ni

x(i,j,k)=float(i-1)

y(i,j,k)=float(j-1)

z(i,j,k)=float(k-1)

7

enddo

enddo

enddo

write(6,’(’’ created simple 3-D grid points’’)’)

c

c WRITE X, Y, Z GRID POINTS TO CGNS FILE

c open CGNS file for write

call cg open f(’grid.cgns’,MODE WRITE,index file,ier)

c create base (user can give any name)

basename=’Base’

icelldim=3

iphysdim=3

call cg base write f(index file,basename,icelldim,iphysdim,

+ index base,ier)

c define zone name (user can give any name)

zonename = ’Zone 1’

c vertex size

isize(1,1)=21

isize(2,1)=17

isize(3,1)=9

c cell size

isize(1,2)=isize(1,1)-1

isize(2,2)=isize(2,1)-1

isize(3,2)=isize(3,1)-1

c boundary vertex size (always zero for structured grids)

isize(1,3)=0

isize(2,3)=0

isize(3,3)=0

c create zone

call cg zone write f(index file,index base,zonename,isize,

+ Structured,index zone,ier)

c write grid coordinates (user must use SIDS-standard names here)

call cg coord write f(index file,index base,index zone,RealDouble,

+ ’CoordinateX’,x,index coord,ier)

call cg coord write f(index file,index base,index zone,RealDouble,

+ ’CoordinateY’,y,index coord,ier)

call cg coord write f(index file,index base,index zone,RealDouble,

+ ’CoordinateZ’,z,index coord,ier)

c close CGNS file

call cg close f(index file,ier)

write(6,’(’’ Successfully wrote grid to file grid.cgns’’)’)

stop

end

——————————————————————–

8

There are several items to note regarding this code. Whenever a new entity is created
using the API, an integer index is returned. This index is used in subsequent API calls
to refer to the entity. For example, the above call to cg open f, which opens the file
grid.cgns, assigns to this entity the index index file. This same index file is used
to identify this entity in subsequent calls. Similarly, cg base write f assigns an index
index base to the base, cg zone write f assigns an index index zone to the zone, and
cg coord write f assigns an index index coord to each coordinate.

For FORTRAN code, an include statement pointing to cgnslib f.h must be present.
(The cgnslib f.h file comes with the CGNS software.) Also, it is imperative that the x,
y, and z arrays be dimensioned exactly as (21,17,N), where N ≥ 9 (or else as a one-
dimensional array of at least size 21 ∗ 17 ∗ 9) for this particular example; this is because
the cg coord write f routine writes the first 21 ∗ 17 ∗ 9 values contained in the array
as it is stored in memory. If x, y, and z are tri-dimensional arrays and the first two
indices are dimensioned larger than 21 and 17, respectively, then incorrect values will
be placed in the CGNS file. In a real working code, one would probably either (a) use
one-dimensional arrays, (b) dynamically allocate appropriate memory for x, y, and z, or
else (c) pass the index values to a subroutine and write via an appropriately dimensioned
work array.

In this case, the cell dimension (icelldim) is 3 (because the grid is made up of
volume cells), and the physical dimension (iphysdim) is 3 (because 3 coordinates define
3-D). (Refer to Appendix C for a more detailed description.) The isize array contains
the vertex size, cell size, and boundary vertex size for each index direction. For a 3-
D structured grid, the index dimension is always the same as the cell dimension, so
this means there are 3 vertex sizes, 3 cell sizes, and 3 boundary vertex sizes (one each
for the i, j, and k directions). For structured grids, the cell size is always one less
than the corresponding vertex size, and the boundary vertex size has no meaning and is
always zero. When writing the grid coordinates, the user must use SIDS-standard names.
For example, x, y, and z coordinates must be named CoordinateX, CoordinateY, and
CoordinateZ, respectively. Other standard names exist for other possible choices (see
[1]). Finally, basename and zonename must be declared as character strings, and the
integer array isize must be dimensioned appropriately.

The grid coordinate arrays can be written in single or double precision. The desired
data type is communicated to the API using the keywords RealSingle or RealDouble.
The user must insure that the data type transmitted to the API is consistent with the
the one used in declaring the coordinates arrays. When it is compiled, the code must
also link to the compiled CGNS library libcgns.xxx.a, where xxx is set depending on
the computer system on which it is implemented. Instructions for compiling the CGNS
library are given in README files that come with the CGNS software, or a pre-compiled
libcgns.xxx.a library appropriate for a given system can be downloaded from the CGNS
website.

A complete code written in C that performs the same task of creating grid coordinates
and writing them to a CGNS file is given here.

——————————————————————–

9

/*

Creates simple 3-D structured grid and writes it to a

CGNS file.

UNIX compilation (IRIX 5.3 or higher with mips4 64 option)

for this program is:

cc -r8 -64 write grid str.c CGNSLib/lib/libcgns.mips4 64.a

(CGNSLib/lib/ is the location where the compiled

library libcgns.mips4 64.a is located)

(Note it is compiled double precision because RealDouble

is used below)

*/

#include <stdio.h>

/* must include path to cgnslib.h file: */

#include "CGNSLib/cgnslib.h"

main()

{
/*

dimension statements (note that tri-dimensional arrays

x,y,z must be dimensioned exactly as [N][17][21] (N>=9)

for this particular case or else they will be written to

the CGNS file incorrectly! Other options are to use 1-D

arrays, use dynamic memory, or pass index values to a

subroutine and dimension exactly there):

*/

double x[9][17][21],y[9][17][21],z[9][17][21];

int isize[3][3];

int ni,nj,nk,i,j,k;

int index file,icelldim,iphysdim,index base;

int index zone,index coord;

char *basename,*zonename;

/* create gridpoints for simple example: */

ni=21;

nj=17;

nk=9;

for (k=0; k < nk; ++k)

{
for (j=0; j < nj; ++j)

{
for (i=0; i < ni; ++i)

{
x[k][j][i]=i;

y[k][j][i]=j;

z[k][j][i]=k;

10

}
}

}
printf("\ncreated simple 3-D grid points");

/* WRITE X, Y, Z GRID POINTS TO CGNS FILE */

/* open CGNS file for write */

cg open("grid c.cgns",MODE WRITE,&index file);

/* create base (user can give any name) */

basename="Base";

icelldim=3;

iphysdim=3;

cg base write(index file,basename,icelldim,iphysdim,&index base);

/* define zone name (user can give any name) */

zonename="Zone 1";

/* vertex size */

isize[0][0]=21;

isize[0][1]=17;

isize[0][2]=9;

/* cell size */

isize[1][0]=isize[0][0]-1;

isize[1][1]=isize[0][1]-1;

isize[1][2]=isize[0][2]-1;

/* boundary vertex size (always zero for structured grids) */

isize[2][0]=0;

isize[2][1]=0;

isize[2][2]=0;

/* create zone */

cg zone write(index file,index base,zonename,*isize,Structured,

&index zone);

/* write grid coordinates (user must use SIDS-standard names here) */

cg coord write(index file,index base,index zone,RealDouble,"CoordinateX",

x,&index coord);

cg coord write(index file,index base,index zone,RealDouble,"CoordinateY",

y,&index coord);

cg coord write(index file,index base,index zone,RealDouble,"CoordinateZ",

z,&index coord);

/* close CGNS file */

cg close(index file);

printf("\nSuccessfully wrote grid to file grid c.cgns\n");

}
——————————————————————–

Note that in the C-code, the “.h” file that must be included is called cgnslib.h. From
now on, all codes will be given in FORTRAN only. The C-equivalent calls are similar,
as demonstrated above. Also, from now on, complete code will not be shown, but rather

11

only code segments, in order to save space. However, complete codes can be accessed
from the CGNS site at SourceForge (sourceforge.net/projects/cgns).

The CGNS file grid.cgns that is created by the code above is a binary file that, inter-
nally, possesses the tree-like structure shown in Fig. 4. As mentioned in the Introduction,
each node has a name, a label, and may or may not contain data. In the example in the
figure, all the nodes contain data except for the GridCoordinates node, for which MT

indicates no data.

root node

Name=CGNSLibraryVersion
Label=CGNSLibraryVersion_t
Data=(version number)

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=CoordinateZ
Label=DataArray_t
Data=z(1,1,1) to z(21,17,9)

Name=CoordinateX
Label=DataArray_t
Data=x(1,1,1) to x(21,17,9)

Name=CoordinateY
Label=DataArray_t
Data=y(1,1,1) to y(21,17,9)

Figure 4: Layout of CGNS file for simple Cartesian structured grid.

However, the user really does not need to know the full details of the tree-like structure
in this case. The API has automatically created a SIDS-compliant CGNS file! Now, the
user can just as easily read the CGNS file using the API. The FORTRAN code segment
used to read the CGNS file grid.cgns that we just created is given here:

——————————————————————–

c READ X, Y, Z GRID POINTS FROM CGNS FILE

include ’cgnslib f.h’

c open CGNS file for read

call cg open f(’grid.cgns’,MODE READ,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

12

c we know there is only one zone (real working code would check!)

index zone=1

c get zone size (and name - although not needed here)

call cg zone read f(index file,index base,index zone,zonename,

+ isize,ier)

c lower range index

irmin(1)=1

irmin(2)=1

irmin(3)=1

c upper range index of vertices

irmax(1)=isize(1,1)

irmax(2)=isize(2,1)

irmax(3)=isize(3,1)

c read grid coordinates

call cg coord read f(index file,index base,index zone,

+ ’CoordinateX’,RealSingle,irmin,irmax,x,ier)

call cg coord read f(index file,index base,index zone,

+ ’CoordinateY’,RealSingle,irmin,irmax,y,ier)

call cg coord read f(index file,index base,index zone,

+ ’CoordinateZ’,RealSingle,irmin,irmax,z,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

Note that this FORTRAN coding is very rudimentary. It assumes that we know that
there is only one base and one zone. In a real working code, one should check the
numbers in the file, and either allow for the possibility of multiple bases or zones, or
explicitly disallow it. Also, this coding implicitly assumes that the grid.cgns file is a
3-D structured grid (cell dimension = physical dimension = 3). In a real working code,
one should check to make sure that this is true, or else allow for other possibilities. One
should also check to make sure the zone type is Structured if this is the type expected.

As before, the x, y, and z arrays in this case must be dimensioned correctly: for a tri-
dimensional array, (21,17,N), where N ≥ 9. (In a real working code, one would probably
either (a) use one-dimensional arrays, (b) dynamically allocate appropriate memory for x,
y, and z after reading isize, or else (c) pass the isize values to a subroutine and dimension
a work array appropriately prior to reading.) Also note that, regardless of the precision
in which the grid coordinates were written to the CGNS file (single or double), one can
read them either way; the API automatically performs the translation. (The arrays x,
y, and z in the code above must be declared as single precision if RealSingle is used
and as double precision if RealDouble is used.) Finally, isize should be dimensioned
appropriately, zonename should be declared as a character variable, and irmin and irmax

should be dimensioned appropriately.

13

2.1.2 Single-Zone Structured Grid and Flow Solution

In this section, we now write a flow solution associated with the grid from section 2.1.1.
We assume that we have two flow solution arrays available: static density and static
pressure. To illustrate three important options, we will show how to write the flow
solution (a) at vertices, (b) at cell centers, and (c) at cell centers plus rind cells.

(a) Flow Solution at Vertices

The first option is illustrated schematically in 2-D in Fig. 5. Simply stated, a Vertex

flow solution is located at the same location as the grid points. Assuming that the grid
points have already been written to a CGNS file, the following FORTRAN code segment
adds the flow solution at vertices:

Figure 5: Schematic showing location (circles) of Vertex flow solution relative to grid.

——————————————————————–

c WRITE FLOW SOLUTION TO EXISTING CGNS FILE

include ’cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c define flow solution node name (user can give any name)

solname = ’FlowSolution’

c create flow solution node

call cg sol write f(index file,index base,index zone,solname,

+ Vertex,index flow,ier)

c write flow solution (user must use SIDS-standard names here)

14

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Density’,r,index field,ier)

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Pressure’,p,index field,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

In this code, the density (r) and pressure (p) variables must be dimensioned correctly
for this particular case: for a tri-dimensional array, (21,17,N), where N ≥ 9 (see discus-
sion in section 2.1.1). Note that the API, knowing that the flow solution type is Vertex,
automatically writes out the correct index range, corresponding with the zone’s grid index
range. Also note that we opened the existing CGNS file and modified it (MODE MODIFY)
- we knew ahead of time that only one base and only one zone exist; a real working
code would make appropriate checks. Finally, solname should be declared as a character
variable and r and p must be declared as double precision variables when RealDouble

type is used.

The layout of the CGNS file with the flow solution at vertices included is shown in
Fig. 6. The three nodes under GridCoordinates t have been left out to conserve space
in the figure, but they exist as indicated by the three unconnected lines.

The vertex flow solution can be read in using the following FORTRAN code segment
(can read in as single or double precision – see discussion in section 2.1.1):

——————————————————————–

c READ FLOW SOLUTION FROM CGNS FILE

include ’cgnslib f.h’

c open CGNS file for read

call cg open f(’grid.cgns’,MODE READ,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c we know there is only one FlowSolution t (real working code would check!)

index flow=1

c get zone size (and name - although not needed here)

call cg zone read f(index file,index base,index zone,zonename,

+ isize,ier)

c lower range index

irmin(1)=1

irmin(2)=1

irmin(3)=1

c upper range index - use vertex dimensions

c checking GridLocation first (real working code would check

c to make sure there are no Rind cells also!):

call cg sol info f(index file,index base,index zone,index flow,

15

root node

Name=CGNSLibraryVersion
Label=CGNSLibraryVersion_t
Data=(version number)

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=Pressure
Label=DataArray_t
Data=p(1,1,1) to p(21,17,9)

Name=GridLocation
Label=GridLocation_t
Data=Vertex

Name=Density
Label=DataArray_t
Data=r(1,1,1) to r(21,17,9)

Name=FlowSolution
Label=FlowSolution_t
Data=MT

Figure 6: Layout of CGNS file for simple Cartesian structured grid with flow solution at
vertices. (Note: because GridLocation = Vertex is the default, it is not necessary to
specify it. In fact, the latest API software does not include this node in the file.)

16

+ solname,loc,ier)

if (loc .ne. Vertex) then

write(6,’(’’ Error, GridLocation must be Vertex!’’)’)

stop

end if

irmax(1)=isize(1,1)

irmax(2)=isize(2,1)

irmax(3)=isize(3,1)

c read flow solution

call cg field read f(index file,index base,index zone,index flow,

+ ’Density’,RealSingle,irmin,irmax,r,ier)

call cg field read f(index file,index base,index zone,index flow,

+ ’Pressure’,RealSingle,irmin,irmax,p,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

Note that this code segment assumes that it is known that the flow solution contains
no rind data (to be covered in detail below). If rind data does exist, but the user does
not account for it, then the flow solution information will be read incorrectly. Hence, a
real working code would check for rind cells, and adjust the dimensions and index ranges
appropriately. Other similar cautions as those mentioned earlier regarding dimensioning
of variables, real working code checks, etc., apply here as well. These cautions will not
always be repeated from this point forward.

(b) Flow Solution at Cell Centers

The option for outputting the flow solution at cell centers is illustrated schematically
in 2-D in Fig. 7. The flow solutions are defined at the centers of the cells defined by the
four surrounding grid points. In 3-D, the cell centers are defined by eight surrounding
grid points. The code segment to write to cell centers is identical to that given above for
vertices, except that the call to cg sol write f is replaced by:

——————————————————————–

c create flow solution node (NOTE USE OF CellCenter HERE)

call cg sol write f(index file,index base,index zone,solname,CellCenter,

+ index flow,ier)

——————————————————————–

Also, now the density (r) and pressure (p) variables must be dimensioned correctly for
this particular case: for a tri-dimensional array, (20,16,N), where N ≥ 8 (i.e., one less in
each index dimension than the grid itself). Again, the API, knowing that the flow solution
type is CellCenter, automatically writes out the correct index range, corresponding with
the zone’s grid index range minus 1 in each index direction.

The layout of the CGNS file with the flow solution at cell centers is shown (below the

17

Figure 7: Schematic showing location (circles) of CellCenter flow solution relative to
grid.

FlowSolution t node only) in Fig. 8. Note that the indices over which the flow solutions
are written are now from (1, 1, 1) to (20, 16, 8) (contrast with the FlowSolution part of
Fig. 6).

Name=Pressure
Label=DataArray_t
Data=p(1,1,1) to p(20,16,8)

Name=GridLocation
Label=GridLocation_t
Data=CellCenter

Name=Density
Label=DataArray_t
Data=r(1,1,1) to r(20,16,8)

Name=FlowSolution
Label=FlowSolution_t
Data=MT

Figure 8: Layout of CGNS file (under FlowSolution t node) for simple Cartesian struc-
tured grid with flow solution at cell centers.

The FORTRAN code segment to read in the solution at cell centers is the same as
that given above for vertices, except that the section that defines irmax is replaced by:

——————————————————————–

c upper range index - use cell dimensions

c checking GridLocation first (real working code would check

c to make sure there are no Rind cells also!):

18

call cg sol info f(index file,index base,index zone,index flow,

+ solname,loc,ier)

if (loc .ne. CellCenter) then

write(6,’(’’ Error, GridLocation must be CellCenter!’’)’)

stop

end if

irmax(1)=isize(1,2)

irmax(2)=isize(2,2)

irmax(3)=isize(3,2)

——————————————————————–

and, as usual, the r and p arrays must be dimensioned appropriately.

(c) Flow Solution at Cell Centers With Additional Rind Data

Rind data is additional flow solution data exterior to a grid, at “ghost cell” loca-
tions. Rind data can be associated with other GridLocation values beside CellCenter,
although we only show an example using CellCenter here. Furthermore, this example
is for structured grids only, for which Rind data can be defined implicitly (via indexing
conventions alone). The option for outputting the flow solution at cell centers with ad-
ditional rind data is illustrated schematically in 2-D in Fig. 9. In this diagram, we show
one layer of rind cell data in the row below the grid itself. There could be rind data at
other sides of the grid, or there could be more than one row at a given side.

Figure 9: Schematic showing location (circles) of CellCenter flow solution, including
rind cells, relative to grid.

In CGNS, the flow solution at rind cells is not stored as separate entities, but rather
the flow solution range is extended to include the rind cells. For example, in the 2-D
schematic of Fig. 9, instead of an index range of p(3,2) for pressures stored at the cell

19

centers, the flow solution would now have an index range of p(3,0:2) or p(3,3). See [1]
for details.

For our 3-D example, we assume that we have one row of rind data at 4 faces of the
zone (ilo, ihi, jlo, jhi, where these represent the low and high ends of the i and j
directions, respectively), and no rind cells at klo or khi (at either end of the k direction).
The code segment to write the flow solution and rind data is as follows:

——————————————————————–

c WRITE FLOW SOLUTION TO EXISTING CGNS FILE

include ’cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c define flow solution node name (user can give any name)

solname = ’FlowSolution’

c create flow solution node

call cg sol write f(index file,index base,index zone,solname,CellCenter,

+ index flow,ier)

c go to position within tree at FlowSolution t node

call cg goto f(index file,index base,ier,’Zone t’,index zone,

+ ’FlowSolution t’,index flow,’end’)

c write rind information under FlowSolution t node (ilo,ihi,jlo,jhi,klo,khi)

irinddata(1)=1

irinddata(2)=1

irinddata(3)=1

irinddata(4)=1

irinddata(5)=0

irinddata(6)=0

call cg rind write f(irinddata,ier)

c write flow solution (user must use SIDS-standard names here)

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Density’,r,index field,ier)

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Pressure’,p,index field,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

Note that in the case of rind data, the user must position the Rind t node appropriately,
using the cg goto f call. In this case, the Rind t node belongs under the FlowSolution t

node.

For this case of cell center flow solution with rind data, the density (r) and pressure (p)

20

are written to the CGNS file with the following index ranges: from i = 0 to i = 20+1 = 21
(or a total i length of 22), from j = 0 to j = 16 + 1 = 17 (or a total j length of 18), and
from k = 1 to k = 8. The variables r and p must be dimensioned appropriately to reflect
these index ranges modified by the rind values.

The layout of the CGNS file for this example (below the FlowSolution t node only)
is shown in Fig. 10. Compare this figure with Figs. 6 and 8.

Name=Pressure
Label=DataArray_t
Data=p(0,0,1) to p(21,17,8)

Name=GridLocation
Label=GridLocation_t
Data=CellCenter

Name=Density
Label=DataArray_t
Data=r(0,0,1) to r(21,17,8)

Name=FlowSolution
Label=FlowSolution_t
Data=MT

Name=Rind
Label=Rind_t
Data=(1,1,1,1,0,0)

Figure 10: Layout of CGNS file (under FlowSolution t node) for simple Cartesian
structured grid with flow solution at cell centers plus rind data.

A FORTRAN code segment to read the flow solution for this example is:

——————————————————————–

c READ FLOW SOLUTION FROM CGNS FILE

include ’cgnslib f.h’

c open CGNS file for read

call cg open f(’grid.cgns’,MODE READ,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c we know there is only one FlowSolution t (real working code would check!)

index flow=1

c get zone size (and name - although not needed here)

call cg zone read f(index file,index base,index zone,zonename,isize,ier)

c go to position within tree at FlowSolution t node

call cg goto f(index file,index base,ier,’Zone t’,index zone,

+ ’FlowSolution t’,index flow,’end’)

c read rind data

call cg rind read f(irinddata,ier)

c lower range index

21

irmin(1)=1

irmin(2)=1

irmin(3)=1

c upper range index - use cell dimensions and rind info

c checking GridLocation first:

call cg sol info f(index file,index base,index zone,index flow,

+ + solname,loc,ier)

if (loc .ne. CellCenter) then

write(6,’(’’ Error, GridLocation must be CellCenter!’’)’)

stop

end if

irmax(1)=isize(1,2)+irinddata(1)+irinddata(2)

irmax(2)=isize(2,2)+irinddata(3)+irinddata(4)

irmax(3)=isize(3,2)+irinddata(5)+irinddata(6)

c read flow solution

call cg field read f(index file,index base,index zone,index flow,

+ ’Density’,RealSingle,irmin,irmax,r,ier)

call cg field read f(index file,index base,index zone,index flow,

+ ’Pressure’,RealSingle,irmin,irmax,p,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

2.1.3 Single-Zone Structured Grid with Boundary Conditions

To illustrate the use of boundary conditions, we again use the same single-zone Cartesian
grid from section 2.1.1. Referring back to Fig. 3, we wish to apply the following:

ilo – BCTunnelInflow

ihi – BCExtrapolate

jlo – BCWallInviscid

jhi – etc.
klo – etc.
khi – etc.

where BCTunnelInflow, BCExtrapolate, and BCWallInviscid are data-name identifiers
for boundary conditions. The complete list of boundary condition identifiers is found in
[1]. In this example, we take the approach of using the lowest-level BC implementation
allowed – see Fig. 24 and the discussion in Appendix C.

In this section, we show two different approaches for defining the region over which
each boundary condition acts. The first is with type PointRange, meaning that we define
the minimum and maximum points on a face that define a logically rectangular region
(this method is usable only for faces that are capable of being defined in this way).
The second is with type PointList, which gives the list of all the points for which the
boundary condition applies. This latter method is generally used for unstructured zones

22

or for any zone whose defined region is not logically rectangular.

(a) Boundary Conditions Specifying Range

A FORTRAN code segment to write the boundary condition information of type
PointRange to the existing CGNS file from section 2.1.1 or 2.1.2 is given here:

——————————————————————–

c WRITE BOUNDARY CONDITIONS TO EXISTING CGNS FILE

include ’cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c get zone size (and name - although not needed here)

call cg zone read f(index file,index base,index zone,zonename,

+ isize,ier)

ilo=1

ihi=isize(1,1)

jlo=1

jhi=isize(2,1)

klo=1

khi=isize(3,1)

c write boundary conditions for ilo face, defining range first

c (user can give any name)

c lower point of range

ipnts(1,1)=ilo

ipnts(2,1)=jlo

ipnts(3,1)=klo

c upper point of range

ipnts(1,2)=ilo

ipnts(2,2)=jhi

ipnts(3,2)=khi

call cg boco write f(index file,index base,index zone,’Ilo’,

+ BCTunnelInflow,PointRange,2,ipnts,index bc,ier)

c write boundary conditions for ihi face, defining range first

c (user can give any name)

c lower point of range

ipnts(1,1)=ihi

ipnts(2,1)=jlo

ipnts(3,1)=klo

c upper point of range

ipnts(1,2)=ihi

23

ipnts(2,2)=jhi

ipnts(3,2)=khi

call cg boco write f(index file,index base,index zone,’Ihi’,

+ BCExtrapolate,PointRange,2,ipnts,index bc,ier)

c write boundary conditions for jlo face, defining range first

c (user can give any name)

c lower point of range

ipnts(1,1)=ilo

ipnts(2,1)=jlo

ipnts(3,1)=klo

c upper point of range

ipnts(1,2)=ihi

ipnts(2,2)=jlo

ipnts(3,2)=khi

call cg boco write f(index file,index base,index zone,’Jlo’,

+ BCWallInviscid,PointRange,2,ipnts,index bc,ier)

... etc...

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

The zone names (e.g., Ilo) are arbitrary. Note that the variable zonename must be de-
clared as a character variable, and isize and ipnts must be dimensioned appropriately.

The layout of the CGNS file for this example is shown in Fig. 11. Four of the children
nodes of ZoneBC t are left off for clarity.

Reading the boundary conditions can also be easily accomplished using API calls, but
we do not show an example of this here. Because there are multiple BC t children nodes
under the ZoneBC t node, the user must first read in the number of children nodes that
exist, then loop through them and retrieve the information from each.

(b) Boundary Conditions Specifying Points

The FORTRAN code segment to write the boundary conditions using PointList is
the same as that for PointRange except that the following segment, for example,

——————————————————————–

c write boundary conditions for ilo face, defining range first

c (user can give any name)

ipnts(1,1)=ilo

ipnts(2,1)=jlo

ipnts(3,1)=klo

ipnts(1,2)=ilo

ipnts(2,2)=jhi

ipnts(3,2)=khi

call cg boco write f(index file,index base,index zone,’Ilo’,

24

root node

Name=CGNSLibraryVersion
Label=CGNSLibraryVersion_t
Data=(version number)

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=FlowSolution
Label=FlowSolution_t
Data=MT

Name=ZoneBC
Label=ZoneBC_t
Data=MT

Name=Ihi
Label=BC_t
Data=BCExtrapolate

Name=PointRange
Label=IndexRange_t
Data=(21,1,1),(21,17,9)

Name=Ilo
Label=BC_t
Data=BCTunnelInflow

Name=PointRange
Label=IndexRange_t
Data=(1,1,1),(1,17,9)

Figure 11: Layout of CGNS file for simple Cartesian structured grid with flow solution
and boundary conditions using PointRange.

25

+ BCTunnelInflow,PointRange,2,ipnts,index bc,ier)

——————————————————————–

is replaced by:

——————————————————————–

c write boundary conditions for ilo face, defining pointlist first

c (user can give any name)

icount=0

do j=jlo,jhi

do k=klo,khi

icount=icount+1

ipnts(1,icount)=ilo

ipnts(2,icount)=j

ipnts(3,icount)=k

enddo

enddo

call cg boco write f(index file,index base,index zone,’Ilo’,

+ BCTunnelInflow,PointList,icount,ipnts,index bc,ier)

——————————————————————–

The layout of the CGNS file in this case is the same as Fig. 11, except that PointRange
(IndexRange t) becomes PointList (IndexArray t) and there is icount data in the
PointList nodes.

2.1.4 Multi-Zone Structured Grid with 1-to-1 Connectivity

For the case of a multi-zone structured grid, each zone is handled individually in the same
way as the examples in the preceding sections. However, multi-zone grids also require
additional information about how the zones are connected to one another. A discussion
of different types of zone-to-zone connectivity can be found in Appendix C. For the
example in this section, we show only a simple 1-to-1 connectivity example. We assume
that we have a two-zone grid, each identical to the one showed in Fig. 3 (21 × 17 × 9),
except that zone 2 is offset in the x-direction by 20 units. Thus, the ilo face of zone 2
abuts the ihi face of zone 1, and each abutting point in the two zones touches a point
from the neighboring zone. A picture of the grid is shown in Fig. 12.

The overall layout of this two-zone CGNS file is not shown here. It is similar to those
shown earlier, except now there are two zones rather than one. See Appendix C for an
additional example.

Now, 1-to-1 connectivity information must be written into each of the zones. There
are two ways to record this 1-to-1 information. The first (specific) method is valid
only for 1-to-1 interfaces, and the regions must be logically rectangular (because they
are recorded via PointRange and PointRangeDonor nodes, for which only two points
define the entire region). The second way is more general. It uses PointList nodes in
combination with PointListDonor. (A third method, used to describe interfaces that

26

X

Y

Z

Zone 1

Zone 2

Figure 12: 2-Zone Cartesian structured grid with 1-to-1 connectivity.

are not point-matched – such as mismatched or overset zones – employs CellListDonor
and InterpolantsDonor.) Refer to the SIDS document [1] for details on the various
methods for describing connectivity.

(a) Connectivity Using Specific 1-to-1 Method

The 1-to-1 connectivity information for the current example can be written to a CGNS
file using the following FORTRAN code segment (assuming that all grid information has
already been written):

——————————————————————–

c WRITE 1-TO-1 CONNECTIVITY INFORMATION TO EXISTING CGNS FILE

include ’cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c get number of zones (should be 2 for our case)

call cg nzones f(index file,index base,nzone,ier)

c loop over zones to get zone sizes and names

do index zone=1,nzone

call cg zone read f(index file,index base,index zone,

+ zonename(index zone),isize,ier)

ilo(index zone)=1

27

ihi(index zone)=isize(1,1)

jlo(index zone)=1

jhi(index zone)=isize(2,1)

klo(index zone)=1

khi(index zone)=isize(3,1)

enddo

c loop over zones again

do index zone=1,nzone

c set up index ranges

if (index zone .eq. 1) then

donorname=zonename(2)

c lower point of receiver range

ipnts(1,1)=ihi(1)

ipnts(2,1)=jlo(1)

ipnts(3,1)=klo(1)

c upper point of receiver range

ipnts(1,2)=ihi(1)

ipnts(2,2)=jhi(1)

ipnts(3,2)=khi(1)

c lower point of donor range

ipntsdonor(1,1)=ilo(2)

ipntsdonor(2,1)=jlo(2)

ipntsdonor(3,1)=klo(2)

c upper point of donor range

ipntsdonor(1,2)=ilo(2)

ipntsdonor(2,2)=jhi(2)

ipntsdonor(3,2)=khi(2)

else

donorname=zonename(1)

c lower point of receiver range

ipnts(1,1)=ilo(2)

ipnts(2,1)=jlo(2)

ipnts(3,1)=klo(2)

c upper point of receiver range

ipnts(1,2)=ilo(2)

ipnts(2,2)=jhi(2)

ipnts(3,2)=khi(2)

c lower point of donor range

ipntsdonor(1,1)=ihi(1)

ipntsdonor(2,1)=jlo(1)

ipntsdonor(3,1)=klo(1)

c upper point of donor range

ipntsdonor(1,2)=ihi(1)

ipntsdonor(2,2)=jhi(1)

ipntsdonor(3,2)=khi(1)

28

end if

c set up Transform

itranfrm(1)=1

itranfrm(2)=2

itranfrm(3)=3

c write 1-to-1 info (user can give any name)

call cg 1to1 write f(index file,index base,index zone,

+ ’Interface’,donorname,ipnts,ipntsdonor,itranfrm,

+ index conn,ier)

enddo

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

Note that this code segment is geared very specifically toward our 2-zone example, i.e., it
relies on our knowledge of this particular case. Transform defines the relative orientation
of the i, j, and k indices of the abutting zones. Details concerning the values of Transform
are not given here; they can be found in [1]. However, note that Transform values of
(1,2,3) indicate that the i, j, k axes of both zones are oriented in the same directions.
Reading the connectivity information can also be easily accomplished using API calls,
but we do not show an example of this here. And finally, we do not show the layout
of the nodes associated with the connectivity here. The interested user is referred to
Appendix C for an example figure.

(b) Connectivity Using General Method

Using a more general method, for which each connectivity pair is listed (rather than
ranges), the connectivity information for the current example can be written to a CGNS
file using the following FORTRAN code segment:

——————————————————————–

c WRITE GENERAL CONNECTIVITY INFORMATION TO EXISTING CGNS FILE

include ’cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c get number of zones (should be 2 for our case)

call cg nzones f(index file,index base,nzone,ier)

c loop over zones to get zone sizes and names

do index zone=1,nzone

call cg zone read f(index file,index base,index zone,

+ zonename(index zone),isize,ier)

ilo(index zone)=1

ihi(index zone)=isize(1,1)

29

jlo(index zone)=1

jhi(index zone)=isize(2,1)

klo(index zone)=1

khi(index zone)=isize(3,1)

enddo

c loop over zones again

do index zone=1,nzone

c set up point lists

if (index zone .eq. 1) then

icount=0

do j=jlo(index zone),jhi(index zone)

do k=klo(index zone),khi(index zone)

icount=icount+1

ipnts(1,icount)=ihi(1)

ipnts(2,icount)=j

ipnts(3,icount)=k

ipntsdonor(1,icount)=ilo(2)

ipntsdonor(2,icount)=j

ipntsdonor(3,icount)=k

enddo

enddo

donorname=zonename(2)

else

icount=0

do j=jlo(index zone),jhi(index zone)

do k=klo(index zone),khi(index zone)

icount=icount+1

ipnts(1,icount)=ilo(2)

ipnts(2,icount)=j

ipnts(3,icount)=k

ipntsdonor(1,icount)=ihi(1)

ipntsdonor(2,icount)=j

ipntsdonor(3,icount)=k

enddo

enddo

donorname=zonename(1)

end if

c write integer connectivity info (user can give any name)

call cg conn write f(index file,index base,index zone,

+ ’GenInterface’,Vertex,Abutting1to1,PointList,icount,ipnts,

+ donorname,Structured,PointListDonor,Integer,icount,

+ ipntsdonor,index conn,ier)

enddo

c close CGNS file

call cg close f(index file,ier)

30

——————————————————————–

We do not describe the method for recording mismatched (patched) or overset connec-
tivity information in this document; the user is referred to [1] for details. However, note
that in such cases the use of CellListDonor (along with InterpolantsDonor) implies
the specification of cell center indices on the donor side (these would correspond to ele-
ment numbers in unstructured zones). The InterpolantsDonor information consists of
real-valued interpolants.

31

2.2 Unstructured Grid

This section gives several unstructured grid examples. The user should already be fa-
miliar with the information covered in section 2.1, which gives structured grid examples.
Because much of the organization of the CGNS files is identical for both grid types, many
of the ideas covered in the structured grid section are not repeated again here.

2.2.1 Single-Zone Unstructured Grid

This example uses the exact same grid shown earlier in Fig. 3. However, it is now written
as an unstructured grid, which is made up of a series of 6-sided elements (cubes in this
case). A FORTRAN code segment that uses API calls to write this grid to a CGNS file
called grid.cgns is shown here (note that it does not matter how the nodes are ordered
in an unstructured zone, but in this example they are ordered sequentially for simplicity
of presentation):

——————————————————————–

c WRITE X, Y, Z GRID POINTS TO CGNS FILE

include ’cgnslib f.h’

c open CGNS file for write

call cg open f(’grid.cgns’,MODE WRITE,index file,ier)

c create base (user can give any name)

basename=’Base’

icelldim=3

iphysdim=3

call cg base write f(index file,basename,icelldim,iphysdim,index base,ier)

c define zone name (user can give any name)

zonename = ’Zone 1’

c We use the same grid as for the structured example with ni=21,

c nj=17, nk=9. The variables ni, nj, and nk are still used later,

c for convenience when numbering the unstructured grid elements.

ni=21

nj=17

nk=9

c vertex size (21*17*9 = 3213)

isize(1,1)=3213

c cell size (20*16*8 = 2560)

isize(1,2)=2560

c boundary vertex size (zero if elements not sorted)

isize(1,3)=0

c create zone

call cg zone write f(index file,index base,zonename,isize,

+ Unstructured,index zone,ier)

c write grid coordinates (user must use SIDS-standard names here)

call cg coord write f(index file,index base,index zone,RealDouble,

32

+ ’CoordinateX’,x,index coord,ier)

call cg coord write f(index file,index base,index zone,RealDouble,

+ ’CoordinateY’,y,index coord,ier)

call cg coord write f(index file,index base,index zone,RealDouble,

+ ’CoordinateZ’,z,index coord,ier)

c set element connectivity:

c do all the HEXA 8 elements (this part is mandatory):

c maintain SIDS-standard ordering

ielem no=0

c index no of first element

nelem start=1

do k=1,nk-1

do j=1,nj-1

do i=1,ni-1

ielem no=ielem no+1

c in this example, due to the order in the node numbering, the

c hexahedral elements can be reconstructed using the following

c relationships:

ifirstnode=i+(j-1)*ni+(k-1)*ni*nj

ielem(1,ielem no)=ifirstnode

ielem(2,ielem no)=ifirstnode+1

ielem(3,ielem no)=ifirstnode+1+ni

ielem(4,ielem no)=ifirstnode+ni

ielem(5,ielem no)=ifirstnode+ni*nj

ielem(6,ielem no)=ifirstnode+ni*nj+1

ielem(7,ielem no)=ifirstnode+ni*nj+1+ni

ielem(8,ielem no)=ifirstnode+ni*nj+ni

enddo

enddo

enddo

c index no of last element (=2560)

nelem end=ielem no

c unsorted boundary elements

nbdyelem=0

c write HEXA 8 element connectivity (user can give any name)

call cg section write f(index file,index base,index zone,

+ ’Elem’,HEXA 8,nelem start,nelem end,nbdyelem,ielem,

+ index section,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

Note that for unstructured zones, the index dimension is always 1 (because only one
index value is required to identify a position in the mesh), so the isize array contains
the total vertex size, cell size, and boundary vertex size for the zone. In this example, the

33

ielem array must be dimensioned exactly as (8,N), where N is greater than or equal to
the total number of elements. The node points that lie in the lower left corner of Fig. 3
are shown schematically for two elements in Fig. 13. Here it can be seen, for example,
that node numbers 1, 2, 23, 22, 358, 359, 380, and 379 make up element 1.

Node 1

2

3

22

23

24

358

359

360

379

380
381

Element 1

Element 2

Figure 13: Schematic representation of nodes and elements of unstructured grid.

The overall layout of the CGNS file created by the above code segment is shown in
Fig. 14. The nodes for y and z are left off due to lack of space. Compare this figure with
the layout for the structured version of this grid in Fig. 4.

For unstructured zones, the user may also wish to separately list the boundary ele-
ments in the CGNS file. This may be useful for assigning boundary conditions, as we
will show in section 2.2.3 below. In the current example, assume that the user wishes
to assign three different types of boundary conditions: inflow at one end, outflow at the
other end, and side walls on the four faces in-between. To accomplish this, it would be
helpful to have three additional Elements t nodes in the CGNS file, each of which lists
the corresponding faces as elements (QUAD 4 in this case).

A FORTRAN code segment that accomplishes a part of this is given here. It may be
a part of the same code (above) that defined the grid and HEXA 8 connectivity.

——————————————————————–

c do boundary (QUAD) elements (this part is optional,

c but you must do it if you eventually want to define BCs

c at element faces rather than at nodes):

c INFLOW:

ielem no=0

c index no of first element

nelem start=nelem end+1

34

root node

Name=CGNSLibraryVersion
Label=CGNSLibraryVersion_t
Data=(version number)

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone 1
Label=Zone_t
Data=VertexSize=3213,

CellSize=2560,
VertexSizeBoundary=0

Name=ZoneType
Label=ZoneType_t
Data=Unstructured

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=CoordinateX
Label=DataArray_t
Data=x(1) to x(3213)

Name=Elem
Label=Elements_t
Data=ElementType=HEXA_8,

ElementSizeBoundary=0

Name=ElementRange
Label=IndexRange_t
Data=1,2560

Name=ElementConnectivity
Label=DataArray_t
Data=ielem(1,1) to ielem(8,2560)

Figure 14: Layout of CGNS file for unstructured grid.

35

i=1

do k=1,nk-1

do j=1,nj-1

ielem no=ielem no+1

ifirstnode=i+(j-1)*ni+(k-1)*ni*nj

jelem(1,ielem no)=ifirstnode

jelem(2,ielem no)=ifirstnode+ni*nj

jelem(3,ielem no)=ifirstnode+ni*nj+ni

jelem(4,ielem no)=ifirstnode+ni

enddo

enddo

c index no of last element

nelem end=nelem start+ielem no-1

c write QUAD element connectivity for inflow face (user can give any name)

call cg section write f(index file,index base,index zone,

+ ’InflowElem’,QUAD 4,nelem start,nelem end,nbdyelem,

+ jelem,index section,ier)

c OUTFLOW:

... etc...

——————————————————————–

In this example, the jelem array must be dimensioned exactly as (4,N), where N is
greater than or equal to the total number of elements. Note that the nelem start and
nelem end range is defined subsequent to the range of any other elements (i.e., the HEXA 8

elements) already defined in this zone. In other words, all elements in a given zone must
have a different number.

The layout of the CGNS file in this case is exactly the same as that shown in Fig. 14,
except that there are now three additional Elements t nodes under Zone t. These are
shown separately in Fig. 15.

2.2.2 Single-Zone Unstructured Grid and Flow Solution

To add a flow solution to an unstructured zone, the procedure is identical to that for
a structured zone. However, rind cells are handled differently for unstructured zones,
because the data can no longer be defined implicitly (via indexing conventions alone).
Instead, the rind grid points and their element connectivity information should always be
given. In other words, the code segments given in section 2.1.2 for vertex and cell-center
flow solutions (subsections (a) and (b)) are valid for unstructured zones as well, but the
code segments that use rind cells (subsection (c)) are not. For the vertex and cell-center
examples, the only difference for unstructured zones is that all arrays are one-dimensional
(there is only one index), as opposed to three indices for 3-D structured arrays. A vertex
solution indicates that the solution is stored at vertices or nodes. In the above example,
there would be lists of 3213 data array items per solution variable. A cell center solution
implies that the solution is stored at the center of each element. In the above example,

36

Name=SidewallElem
Label=Elements_t
Data=ElementType=QUAD_4,

ElementSizeBoundary=0

Name=ElementRange
Label=IndexRange_t
Data=2817,3776

Name=ElementConnectivity
Label=DataArray_t
Data=nelem(1,1) to nelem(4,960)

Name=ElementRange
Label=IndexRange_t
Data=2561,2688

Name=InflowElem
Label=Elements_t
Data=ElementType=QUAD_4,

ElementSizeBoundary=0

Name=ElementConnectivity
Label=DataArray_t
Data=jelem(1,1) to jelem(4,128)

Name=OutflowElem
Label=Elements_t
Data=ElementType=QUAD_4,

ElementSizeBoundary=0

Name=ElementRange
Label=IndexRange_t
Data=2689,2816

Name=ElementConnectivity
Label=DataArray_t
Data=kelem(1,1) to kelem(4,128)

Figure 15: Layout of additional Elements t boundary face nodes.

there would be lists of 2560 data array items per solution variable.

The overall layout of the CGNS file is the same as that shown in Fig. 14, except that
there would also be a FlowSolution t node under Zone 1, and this node would have
the children nodes GridLocation, Density, and Pressure.

2.2.3 Single-Zone Unstructured Grid with Boundary Conditions

When writing boundary conditions to a CGNS file for an unstructured zone, one follows
the same general procedure outlined in section 2.1.3 for a structured zone. In other words,
the boundary conditions are defined for point ranges or for individual points, where the
points refer to nodes (vertices) of the grid. Coding would be essentially the same as that
presented in section 2.1.3, except that the points and/or ranges are now one-dimensional
(there is only one index), as opposed to three indices for 3-D structured arrays.

However, one also has other options for unstructured zones. For example, if one
wishes to apply boundary conditions at face centers rather than at vertices, one can
create additional Elements t nodes that define the boundary face elements, and then
point to these elements rather than to the nodes.

By default, boundary conditions are assumed to apply at vertices (nodes) when
PointRange or PointList is used. But when GridLocation is something other than
Vertex, then the boundary conditions no longer refer to nodes, but to elements.

Because this concept is quite different from what was done with the structured zone
earlier, we illustrate it with an example. At the end of section 2.2.1, we showed how
to create the additional Elements t nodes defining the boundary faces. The face-center

37

boundary conditions now can be written using the following code segment.

——————————————————————–

c WRITE BOUNDARY CONDITIONS TO EXISTING CGNS FILE

include ’cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c we know that for the unstructured zone, the following face elements

c have been defined as inflow (real working code would check!):

nelem start=2561

nelem end=2688

icount=0

do n=nelem start,nelem end

icount=icount+1

ipnts(icount)=n

enddo

c write boundary conditions for ilo face

call cg boco write f(index file,index base,index zone,’Ilo’,

+ BCTunnelInflow,PointList,icount,ipnts,index bc,ier)

c we know that for the unstructured zone, the following face elements

c have been defined as outflow (real working code would check!):

nelem start=2689

nelem end=2816

icount=0

do n=nelem start,nelem end

icount=icount+1

ipnts(icount)=n

enddo

c write boundary conditions for ihi face

call cg boco write f(index file,index base,index zone,’Ihi’,

+ BCExtrapolate,PointList,icount,ipnts,index bc,ier)

c we know that for the unstructured zone, the following face elements

c have been defined as walls (real working code would check!):

nelem start=2817

nelem end=3776

icount=0

do n=nelem start,nelem end

icount=icount+1

ipnts(icount)=n

enddo

c write boundary conditions for wall faces

38

call cg boco write f(index file,index base,index zone,’Walls’,

+ BCWallInviscid,PointList,icount,ipnts,index bc,ier)

c

ţhe above are all face-center locations for the BCs - must indicate this,

o̧therwise Vertices will be assumed!

do ibc=1,index bc

c (the following call positions you in BC t - it assumes there

c is only one Zone t and one ZoneBC t - real working code would check!)

call cg goto f(index file,index base,ier,’Zone t’,1,

+ ’ZoneBC t’,1,’BC t’,ibc,’end’)

call cg gridlocation write f(FaceCenter,ier)

enddo

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

Note that we assume here that we know in advance the element numbers associated
with each of the boundaries. We have written these element numbers as a PointList,
but, because they are in order, we could just as easily have used PointRange instead. In
that case, only two ipnts values would be needed, equal to nelem start and nelem end,
and icount would be 2. Finally, note that the GridLocation t node under BC t must be
written using the API call cg goto f (which positions you correctly in the tree) followed
by cg gridlocation write f.

A portion of the layout of the CGNS file for the ZoneBC t node and its children is
shown in Fig. 16. The ZoneBC t node lies directly under Zone t. The three figures,
Figs. 14, 15, and 16 taken together, constitute the entire layout of the file.

39

Name=Walls
Label=BC_t
Data=BCWallInviscid

Name=Ilo
Label=BC_t
Data=BCTunnelInflow

Name=Ihi
Label=BC_t
Data=BCExtrapolate

Name=ZoneBC
Label=ZoneBC_t
Data=MT

Name=GridLocation
Label=GridLocation_t
Data=FaceCenter

Name=GridLocation
Label=GridLocation_t
Data=FaceCenter

Name=GridLocation
Label=GridLocation_t
Data=FaceCenter

Name=PointList
Label=IndexArray_t
Data=2689 to 2816

Name=PointList
Label=IndexArray_t
Data=2561 to 2688

Name=PointList
Label=IndexArray_t
Data=2817 to 3776

Figure 16: Layout of part of CGNS file for an unstructured zone with boundary conditions
defined at face-center elements.

3 ADDITIONAL INFORMATION

This section introduces several additional types of data in CGNS. These items are by
no means necessary to include when getting started, but it is likely that most users will
eventually want to implement some of them into their CGNS files at some point in the
future. The section ends with a discussion on the usage of links.

3.1 Convergence History

The ConvergenceHistory t node can be used to store data associated with the conver-
gence of a CFD solution. For example, one may wish to store the global coefficient of lift
as a function of iterations. In this case, this variable should be stored at the CGNSBase t

level of the CGNS file. This is achieved using the API in the following FORTRAN code
segment:

——————————————————————–

c WRITE CONVERGENCE HISTORY INFORMATION TO EXISTING CGNS FILE

include ’cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c go to base node

40

call cg goto f(index file,index base,ier,’end’)

c create history node (SIDS names it GlobalConvergenceHistory at base level)

c ntt is the number of recorded iterations

call cg convergence write f(ntt,’’,ier)

c go to new history node

call cg goto f(index file,index base,ier,’ConvergenceHistory t’,

+ 1,’end’)

c write lift coefficient array (user must use SIDS-standard name here)

call cg array write f(’CoefLift’,RealDouble,1,ntt,cl,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

In this example, the array cl must be declared as an array of size ntt or larger. Additional
arrays of the same size may also be written under the ConvergenceHistory t node. Note
that the call to cg convergence write f includes a blank string in this case, because we
are not recording norm definitions.

3.2 Descriptor Nodes

Descriptor nodes, which record character strings and can be inserted nearly everywhere in
a CGNS file, have many possible uses. Users can insert comments or descriptions to help
clarify the content of some data in the CGNS file. In Appendix C, we mention a possible
use for descriptor nodes to describe data that is UserDefined. Another potentially
desirable use of the descriptor node is to maintain copies of the entire input file(s) from
the CFD application code. Because descriptor nodes can include carriage returns, entire
ASCII files can be “swallowed” into the CGNS file. In this way, a future user can see and
retrieve the exact input file(s) used by the CFD code to generate the data contained in
the CGNS file. The only ambiguity possible would be whether the CFD code itself has
changed since that time; but if the CFD code has strict version control, then complete
recoverability should be possible.

An example that writes a descriptor node at the CGNSBase t level is given here:

——————————————————————–

c WRITE DESCRIPTOR NODE AT BASE LEVEL

include ’cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c go to base node

call cg goto f(index file,index base,ier,’end’)

c write descriptor node (user can give any name)

text1=’Supersonic vehicle with landing gear’

41

text2=’M=4.6, Re=6 million’

textstring=text1//char(10)//text2

call cg descriptor write f(’Information’,textstring,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

In this example, the Descriptor t node is named Information and the character string
textstring (which is made up of text1 and text2 with a line feed – char(10) – in-
between) is written there. All character strings must be declared appropriately.

3.3 Dimensional Data

The node DataClass t denotes the class of the data. When data is dimensional, then
DataClass t = Dimensional. The DataClass t node can appear at many levels in the
CGNS hierarchy; precedence rules dictate that a DataClass t lower in the hierarchy
supersedes any higher up.

For dimensional data, one generally is expected to indicate the dimensionality of
each particular variable through the use of DataClass t, DimensionalUnits t, and
DimensionalExponents t. An example of this is shown in the following code segment
in which units are added to the structured grid and cell center flow solution from sec-
tions 2.1.1 and 2.1.2.

——————————————————————–

c WRITE DIMENSIONAL INFO FOR GRID AND FLOW SOLN

include ’CGNSLib/cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c we know there is only one FlowSolution t (real working code would check!)

index flow=1

c we know there is only one GridCoordinates t (real working code would check!)

index grid=1

c put DataClass and DimensionalUnits under Base

call cg goto f(index file,index base,ier,’end’)

call cg dataclass write f(Dimensional,ier)

call cg units write f(Kilogram,Meter,Second,Kelvin,Degree,ier)

c read fields

call cg nfields f(index file,index base,index zone,index flow,

+ nfields,ier)

do if=1,nfields

42

call cg field info f(index file,index base,index zone,

+ index flow,if,idatatype,fieldname,ier)

if (fieldname .eq. ’Density’) then

exponents(1)=1.

exponents(2)=-3.

exponents(3)=0.

exponents(4)=0.

exponents(5)=0.

else if (fieldname .eq. ’Pressure’) then

exponents(1)=1.

exponents(2)=-1.

exponents(3)=-2.

exponents(4)=0.

exponents(5)=0.

else

write(6,’(’’ Error! this fieldname not expected: ’’,a32)’)

+ fieldname

stop

end if

c write DimensionalExponents

call cg goto f(index file,index base,ier,’Zone t’,1,

+ ’FlowSolution t’,1,’DataArray t’,if,’end’)

call cg exponents write f(RealSingle,exponents,ier)

enddo

c read grid

call cg ncoords f(index file,index base,index zone,ncoords,ier)

exponents(1)=0.

exponents(2)=1.

exponents(3)=0.

exponents(4)=0.

exponents(5)=0.

do ic=1,ncoords

c write DimensionalExponents

call cg goto f(index file,index base,ier,’Zone t’,1,

+ ’GridCoordinates t’,1,’DataArray t’,ic,’end’)

call cg exponents write f(RealSingle,exponents,ier)

enddo

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

Notice in this example that a DataClass t node and a DimensionalUnits t node
are placed near the top of the hierarchy, under CGNSBase t. DataClass t is specified
as Dimensional, and DimensionalUnits t are specified as (Kilogram, Meter, Second,
Kelvin, Degree). These specify that, by and large, the entire database is dimensional

43

with MKS units (anything that is not dimensional or not MKS units could be su-
perseded at lower levels). Then, for each variable locally, one need only specify the
DimensionalExponents, where one exponent is defined for each unit.

The layout of part of the resulting CGNS file from the above example is shown
in Fig. 17. The density has units of kilogram/meter3, and the pressure has units of
kilogram/(meter-second2). The grid coordinates (not shown in the figure) have units of
meters.

Name=Pressure
Label=DataArray_t
Data=p(1,1,1) to p(20,16,8)

Name=GridLocation
Label=GridLocation_t
Data=CellCenter

Name=FlowSolution
Label=FlowSolution_t
Data=MT

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=DimensionalExponents
Label=DimensionalExponents_t
Data=(+1,-1,-2,0,0)

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=DimensionalUnits
Label=DimensionalUnits_t
Data=(Kilogram, Meter,

Second, Kelvin, Degree)

Name=DimensionalExponents
Label=DimensionalExponents_t
Data=(+1,-3,0,0,0)

Name=Density
Label=DataArray_t
Data=r(1,1,1) to r(20,16,8)

Name=DataClass
Label=DataClass_t
Data=Dimensional

Figure 17: Layout of part of a CGNS file for flow solution at cell centers with dimensional
data.

3.4 Nondimensional Data

This example is for the relatively common occurrence of CFD data that is purely nondi-
mensional, for which the reference state is arbitrary (unknown). This type is referred to
as NormalizedByUnknownDimensional. Another nondimensional type, NormalizedBy-
Dimensional, for which the data is nondimensional but the reference state is specifically
known, is not covered here.

For a NormalizedByUnknownDimensional database, the DataClass is recorded as
such, but also a ReferenceState is necessary to define the nondimensionalizations used.
(A ReferenceState t node can be used for any dataset to indicate the global reference

44

state (such as free stream), as well as quantities such as the reference Mach number and
Reynolds number. A ReferenceState t node was not included in section 3.3, but it
could have been.)

For the current example, we do not go into detail regarding the choices of the
items which should populate the reference state for a NormalizedByUnknownDimensional

database. We simply show in the example some typical choices which very often would
likely be included. A detailed discussion of how the data in ReferenceState t defines
the nondimensionalizations is given in the SIDS document [1].

——————————————————————–

c WRITE NONDIMENSIONAL INFO

include ’CGNSLib/cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c put DataClass under Base

call cg goto f(index file,index base,ier,’end’)

call cg dataclass write f(NormalizedByUnknownDimensional,ier)

c put ReferenceState under Base

call cg state write f(’ReferenceQuantities’,ier)

c Go to ReferenceState node, write Mach array and its dataclass

call cg goto f(index file,index base,ier,’ReferenceState t’,1,

+ ’end’)

call cg array write f(’Mach’,RealSingle,1,1,xmach,ier)

call cg goto f(index file,index base,ier,’ReferenceState t’,1,

+ ’DataArray t’,1,’end’)

call cg dataclass write f(NondimensionalParameter,ier)

c Go to ReferenceState node, write Reynolds array and its dataclass

call cg goto f(index file,index base,ier,’ReferenceState t’,1,

+ ’end’)

call cg array write f(’Reynolds’,RealSingle,1,1,reue,ier)

call cg goto f(index file,index base,ier,’ReferenceState t’,1,

+ ’DataArray t’,2,’end’)

call cg dataclass write f(NondimensionalParameter,ier)

c Go to ReferenceState node to write reference quantities:

call cg goto f(index file,index base,ier,’ReferenceState t’,1,

+ ’end’)

c First, write reference quantities that make up Mach and Reynolds:

c Mach Velocity

call cg array write f(’Mach Velocity’,RealSingle,1,1,xmv,ier)

c Mach VelocitySound

call cg array write f(’Mach VelocitySound’,RealSingle,

+ 1,1,xmc,ier)

c Reynolds Velocity

45

call cg array write f(’Reynolds Velocity’,RealSingle,

+ 1,1,rev,ier)

c Reynolds Length

call cg array write f(’Reynolds Length’,RealSingle,

+ 1,1,rel,ier)

c Reynolds ViscosityKinematic

call cg array write f(’Reynolds ViscosityKinematic’,RealSingle,

+ 1,1,renu,ier)

c

c Next, write flow field reference quantities:

c Density

call cg array write f(’Density’,RealSingle,1,1,rho0,ier)

c Pressure

call cg array write f(’Pressure’,RealSingle,1,1,p0,ier)

c VelocitySound

call cg array write f(’VelocitySound’,RealSingle,1,1,c0,ier)

c ViscosityMolecular

call cg array write f(’ViscosityMolecular’,RealSingle,

+ 1,1,vm0,ier)

c LengthReference

call cg array write f(’LengthReference’,RealSingle,

+ 1,1,xlength0,ier)

c VelocityX

call cg array write f(’VelocityX’,RealSingle,1,1,vx,ier)

c VelocityY

call cg array write f(’VelocityY’,RealSingle,1,1,vy,ier)

c VelocityZ

call cg array write f(’VelocityZ’,RealSingle,1,1,vz,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

In this case, the only information added to the CGNS file is at the CGNSBase t

level. Note that Mach and Reynolds (which are stored under ReferenceState) are
variables that are known as “NondimensionalParameter”s, so they must each contain
a DataClass child node stating this (the local DataClass nodes supersede the overall
NormalizedByUnknownDimensional data class that holds for everything else).

The layout of the relevant portion of the resulting CGNS file from the above example is
shown in Fig. 18. Many of the reference quantities that appear under ReferenceState t

have been left out of the figure to conserve space.

46

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=DataClass
Label=DataClass_t
Data=NormalizedByUnknownDimensional

Name=ReferenceState
Label=ReferenceState_t
Data=MT

Name=ReferenceStateDescription
Label=Descriptor_t
Data=ReferenceQuantities

Name=Mach
Label=DataArray_t
Data=4.6

Name=DataClass
Label=DataClass_t
Data=NondimensionalParameter

Name=Density
Label=DataArray_t
Data=1.0

Figure 18: Layout of part of a CGNS file with purely nondimensional data (reference
state unknown).

3.5 Flow Equation Sets

The FlowEquationSet t node is useful for describing how a flow solution was generated.
This is one of the useful self-descriptive aspects of CGNS that may improve the usefulness
and longevity of a CFD dataset. For example, under this node, information such as the
following may be recorded: the flow field was obtained by solving the thin-layer Navier-
Stokes equations (with diffusion only in the j-coordinate direction); the Spalart-Allmaras
turbulence model was employed, and an ideal gas assumption was made with γ = 1.4.

The following FORTRAN code segment writes some of the above example flow equa-
tion set information under the Zone t node from our earlier single-zone structured grid
example from section 2.1. (Note that a FlowEquationSet t node can also be placed at
a higher level, under the CGNSBase t node. The usual precedence rules apply).

——————————————————————–

c WRITE FLOW EQUATION SET INFO

include ’CGNSLib/cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c existing file must be 3D structured (real working code would check!)

47

c Create ’FlowEquationSet’ node under ’Zone t’

call cg goto f(index file,index base,ier,’Zone t’,index zone,

+ ’end’)

c equation dimension = 3

ieq dim=3

call cg equationset write f(ieq dim,ier)

c

c Create ’GoverningEquations’ node under ’FlowEquationSet’

call cg goto f(index file,index base,ier,’Zone t’,index zone,

+ ’FlowEquationSet t’,1,’end’)

call cg governing write f(NSTurbulent,ier)

c Create ’DiffusionModel’ node under ’GoverningEquations’

call cg goto f(index file,index base,ier,’Zone t’,index zone,

+ ’FlowEquationSet t’,1,’GoverningEquations t’,1,’end’)

idata(1)=0

idata(2)=1

idata(3)=0

idata(4)=0

idata(5)=0

idata(6)=0

call cg diffusion write f(idata,ier)

c

c Create ’GasModel’ under ’FlowEquationSet’

call cg goto f(index file,index base,ier,’Zone t’,index zone,

+ ’FlowEquationSet t’,1,’end’)

call cg model write f(’GasModel t’,Ideal,ier)

c Create ’SpecificHeatRatio’ under GasModel

call cg goto f(index file,index base,ier,’Zone t’,index zone,

+ ’FlowEquationSet t’,1,’GasModel t’,1,’end’)

call cg array write f(’SpecificHeatRatio’,RealSingle,1,1,

+ gamma,ier)

c Create ’DataClass’ under ’SpecificHeatRatio’

call cg goto f(index file,index base,ier,’Zone t’,index zone,

+ ’FlowEquationSet t’,1,’GasModel t’,1,’DataArray t’,

+ 1,’end’)

call cg dataclass write f(NondimensionalParameter,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

This particular example is specific to a 3-D structured zone. In an unstructured zone,
the use of DiffusionModel is not valid. The layout of the relevant portion of the resulting
CGNS file from the above example is shown in Fig. 19.

48

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=FlowEquationSet
Label=FlowEquationSet_t
Data=MT

Name=EquationDimension
Label="int"
Data=3

Name=GoverningEquations
Label=GoverningEquations_t
Data=NSTurbulent

Name=DiffusionModel
Label="int[1+...+IndexDimension]"
Data=(0,1,0,0,0,0)

Name=GasModel
Label=GasModel_t
Data=Ideal

Name=SpecificHeatRatio
Label=DataArray_t
Data=1.4

Name=DataClass
Label=DataClass_t
Data=NondimensionalParameter

Figure 19: Layout of part of a CGNS file with flow equation set information.

49

3.6 Time-Dependent Data

Time-dependent data (data with multiple flow solutions) can also be stored in a CGNS
file. Different circumstances may produce data with multiple flow solutions; for example:

1. Non-moving grid

2. Rigidly-moving grid

3. Deforming or changing grid

Each of these may either be the result of a time-accurate run, or else may simply be
multiple snapshots of a non-time-accurate run as it iterates toward convergence.

This section gives an example for type 1 only. Readers interested in the two other
types should refer to the SIDS document [1]. For a non-moving grid, the method for
storing the multiple flow solutions is relatively simple: multiple FlowSolution t nodes,
each with a different name, are placed under each Zone t node. However, there also
needs to be a mechanism for associating each FlowSolution t with a particular time
and/or iteration. This is accomplished through the use of BaseIterativeData t (under
CGNSBase t) and ZoneIterativeData t (under each Zone t). BaseIterativeData t

contains NumberOfSteps, the number of times and/or iterations stored, and their val-
ues. ZoneIterativeData t contains FlowSolutionPointers as a character data array.
FlowSolutionPointers is dimensioned to be of size NumberOfSteps, and contains the
names of the FlowSolution t nodes within the current zone that correspond with the
respective times and/or iterations. Finally, a SimulationType t node is placed under
CGNSBase t to designate what type of simulation (e.g., TimeAccurate, NonTimeAccurate)
produced the data. (Note: the SimulationType t node is not restricted for use with
time-dependent data; any CGNS dataset can employ it!)

The following FORTRAN code segment writes some of the above information, using
our earlier single-zone structured grid example from section 2.1. For the purposes of this
example, it is assumed that there are 3 flow solutions from a time-accurate simulation,
to be output as a function of time to the CGNS file. The variables r1 and p1 represent
the density and pressure at time 1, r2 and p2 are at time 2, and r3 and p3 are at time 3.

——————————————————————–

c WRITE FLOW SOLUTION TO EXISTING CGNS FILE

include ’CGNSLib/cgnslib f.h’

c open CGNS file for modify

call cg open f(’grid.cgns’,MODE MODIFY,index file,ier)

c we know there is only one base (real working code would check!)

index base=1

c we know there is only one zone (real working code would check!)

index zone=1

c set up the times corresponding to the 3 solutions to be

c stored:

50

time(1)=10.

time(2)=20.

time(3)=50.

c define 3 different solution names (user can give any names)

solname(1) = ’FlowSolution1’

solname(2) = ’FlowSolution2’

solname(3) = ’FlowSolution3’

c do loop for the 3 solutions:

do n=1,3

c create flow solution node

call cg sol write f(index file,index base,index zone,solname(n),

+ Vertex,index flow,ier)

c write flow solution (user must use SIDS-standard names here)

if (n .eq. 1) then

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Density’,r1,index field,ier)

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Pressure’,p1,index field,ier)

else if (n .eq. 2) then

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Density’,r2,index field,ier)

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Pressure’,p2,index field,ier)

else

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Density’,r3,index field,ier)

call cg field write f(index file,index base,index zone,index flow,

+ RealDouble,’Pressure’,p3,index field,ier)

end if

enddo

c create BaseIterativeData

nsteps=3

call cg biter write f(index file,index base,’TimeIterValues’,

+ nsteps,ier)

c go to BaseIterativeData level and write time values

call cg goto f(index file,index base,ier,’BaseIterativeData t’,

+ 1,’end’)

call cg array write f(’TimeValues’,RealDouble,1,3,time,ier)

c create ZoneIterativeData

call cg ziter write f(index file,index base,index zone,

+ ’ZoneIterativeData’,ier)

c go to ZoneIterativeData level and give info telling which

c flow solution corresponds with which time (solname(1) corresponds

c with time(1), solname(2) with time(2), and solname(3) with time(3))

call cg goto f(index file,index base,ier,’Zone t’,

51

+ index zone,’ZoneIterativeData t’,1,’end’)

idata(1)=32

idata(2)=3

call cg array write f(’FlowSolutionPointers’,Character,2,idata,

+ solname,ier)

c add SimulationType

call cg simulation type write f(index file,index base,

+ TimeAccurate,ier)

c close CGNS file

call cg close f(index file,ier)

——————————————————————–

As cautioned for earlier coding snippets, dimensions must be set appropriately for
all variables. The variable time (which is an array dimensioned size 3 in this case)
contains the time values stored under BaseIterativeData t. The layout of the result-
ing CGNS file from the above example is shown in Fig. 20. Compare this figure with
Fig. 6. To conserve space, the GridCoordinates t, ZoneType t, and all nodes under-
neath FlowSolution t have been left off.

root node

Name=CGNSLibraryVersion
Label=CGNSLibraryVersion_t
Data=(version number)

Name=Base
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=FlowSolution3
Label=FlowSolution_t
Data=MT

Name=TimeValues
Label=DataArray_t
Data=10, 20, 50

Name=FlowSolution2
Label=FlowSolution_t
Data=MT

Name=FlowSolution1
Label=FlowSolution_t
Data=MT

Name=FlowSolutionPointers
Label=DataArray_t
Data=FlowSolution1,

FlowSolution2,
FlowSolution3

Name=TimeIterValues
Label=BaseIterativeData_t
Data=Number of Steps = 3

Name=SimulationType
Label=SimulationType_t
Data=TimeAccurate

Name=ZoneIterativeData
Label=ZoneIterativeData_t
Data=MT

Figure 20: Layout of CGNS file for simple Cartesian structured grid with multiple time-
accurate flow solutions (non-moving grid coordinates).

52

3.7 Using Links

A link associates one node to another within a CGNS tree, or even one node to another in
a separate CGNS file altogether. This can be useful when there is repeated data; rather
than write the same data multiple times, links can point to the data written only once.

One very important use of links that may be required by many users is to point to grid
coordinates. This usage comes about in the following way. Suppose a user is planning to
use a particular grid for multiple cases. There are several options for how to store the
data. Among these are:

1. Keep a copy of the grid with each flow solution in separate CGNS files.

2. Keep just one CGNS file, with the grid and multiple FlowSolution t nodes; each
FlowSolution t node corresponds with a different case.

3. Keep just one CGNS file, with multiple CGNSBase t nodes. The grid and one flow
solution would be stored under one base. Other bases would each contain a separate
flow solution, plus a link to the grid coordinates in the first base.

4. Keep one CGNS file with the grid coordinates defined, and store the flow solution
for each case in its own separate CGNS file, with a link to the grid coordinates.

Item 1 is conceptually the most direct, and is certainly the recommended method
in general (this is the way all example CGNS files have been portrayed so far in this
document). However, if the grid is very large, then this method causes a lot of storage
space to be unnecessarily used to store the same grid points multiple times. Item 2 may
or may not be a viable option. If the user is striving to have the CGNS file be completely
self-descriptive, with ReferenceState and FlowEquationSet describing the relevant con-
ditions, then this method cannot be used if the ReferenceState or FlowEquationSet is
different between the cases (for example, different Mach numbers, Reynolds numbers, or
angles of attack). Item 3 removes this restriction. It uses links to the grid coordinates
within the same file. Item 4 is similar to item 3, except that the grid coordinates and
each flow solution are stored in separate files altogether.

A sample layout showing the relevant portions of two separate CGNS files for an
example of item 4 is shown in Fig. 21. Note that for multiple-zone grids, each zone
in FILE 1 in this example would have a separate link to the appropriate zone’s grid
coordinates in FILE 2.

The CGNS API now has the capability to specify links and to query link information
in a CGNS file. Previously this was only possible by use of the ADF core library software.
However, when a CGNS file is open for writing and the link creation call is issued, the
link information is merely recorded and the actual link creation is deferred until the file
is written out upon closing it. Therefore, any attempt to go to a location in a linked file
while the CGNS file is open for writing will fail. This problem does not exist when a
CGNS file is open for modification as link creation is immediate.

53

Reading a linked CGNS file presents no difficulties for the API, because links are
“transparent.” As long as any separate linked files keep their name unchanged, and
maintain the same position (within the Unix-directory) relative to the parent file, opening
the parent file will automatically access the linked ones.

Name=FlowSolution
Label=FlowSolution_t
Data=MT

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=GridBase
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=FlowSolutionBase
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=Zone 1
Label=Zone_t
Data=VertexSize=(21,17,9),

CellSize=(20,16,8),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

FILE 1: FILE 2:

(link)

root noderoot node

Figure 21: Layout of part of two CGNS files with a link from one to the grid coordinates
of the other.

54

4 TROUBLESHOOTING

4.1 Handling Errors

The API has an extensive number of checks for errors, relating both to illegal usage of
ADF as well as relating to SIDS-noncompliance. However, it is not guaranteed that the
API will catch all problems prior to reaching the core level. The list of errors that can
arise in the ADF core routines themselves are not listed here; they can be found in the
file ADF interface.c under “Error strings,” and in the ADF User’s Guide [2].

If an error occurs, the message given by the ADF or the API routine should hopefully
be descriptive enough to point to the source of the error.

4.2 Known Problems

One known problem that can occur, which is not so much a problem as it is a restriction,
relates to links. If a user makes a link from one CGNS file to another, then the linked file
must have write permission if the user wishes to open the linking file in MODE MODIFY or
MODE WRITE mode. In other words, opening a CGNS file in MODE MODIFY or MODE WRITE

mode implies that the entire CGNS hierarchy, including links (since they are transparent),
is accessible in that mode.

55

5 FREQUENTLY ASKED QUESTIONS

Q: Does CGNS support solution array names that are not listed in the SIDS?

A: You can use any data-name that you want for solution arrays. However, if you
create a new name not listed in the SIDS, it may not be understood by other applications
reading your file.

—————————-

Q: What is a Family in CGNS?

A: The families are used to link the mesh to the geometry. The data structure Family t
is optional and can be used to define the geometry of boundary patches by referencing
CAD entities. In turn, mesh patches can reference family, so we get: mesh -> family ->
geometry.

—————————-

Q: What are DiscreteData t and IntegralData t used for?

A: DiscreteData t can be used to store field data that is not typically considered part
of the flow solution FlowSolution t. IntegralData t can be used to store generic global
or integral data (a single integer or floating point number is allowed in each DataArray t

node under IntegralData t).

—————————-

Q: What are some good programming practices that will help me avoid problems
when implementing CGNS in my code?

A: The usual good programming standards apply: use plenty of comments, use logical
indentation to make the code more readable, etc. In addition, the API returns an error
code from each of its calls; it is a good idea to check this regularly and gracefully exit
the program with an error message when it is not zero. In FORTRAN, you can use:

if (ier .ne. 0) call cg error exit f

—————————-

Q: How can I look at what is in a CGNS file?

A: The utility ADFviewer is the best way to look at a CGNS file. This utility allows
you to access any node in the file using a Windows-like collapsible node tree. Nodes and
data may be added, deleted, and modified.

—————————-

Q: How can I tell if I have created a truly SIDS-compliant CGNS file?

A: It is currently very difficult to guarantee that a user has created a SIDS-compliant
CGNS file, that others can read and understand. But because the API (mid-level-library)
has many checks for non-compliance, it is much more difficult for you to make a mistake
when using it than if you utilize ADF (core-level) calls.

56

—————————-

Q: How do I write data sets associated with boundary conditions?

A: Writing data sets under boundary conditions is following the “fully SIDS-compliant
BC implementation” rather than the “lowest level BC implementation”. (See Fig. 24 in
Appendix C). In order to do this using the Mid-Level Library, take the following steps:

1. Use cg boco write to create each BC t node and its associated BCType and bound-
ary condition region. (This also creates the top level ZoneBC t node if it does not
already exist. Note that only one ZoneBC t node may exist under any given Zone t

node.) This is the only step necessary to achieve the “lowest level BC implementa-
tion.”

2. Use cg dataset write to create each BCDataSet t node and its associated BCTypeSimple

under the desired BC t node.

3. Use cg bcdata write to create each BCData t node (of either type Dirichlet or
Neumann) under the desired BCDataSet t node.

4. Use cg goto to “go to” the appropriate BCData t node.

5. Use cg array write to write the desired data.

57

Appendix A. THE ADFEDIT UTILITY

The utility adfedit can be used to view (and edit) CGNS files. It is currently included
with the CGNS software, although it is possible that in the future it may be superseded
by a more advanced utility.

The following is a brief description of the most basic capabilities of the adfedit utility.
A typical adfedit session might go like this:

adfedit
ADFmain> br go to “browse”
ADFbrowse> o cgns.file open file cgns.file
ADFbrowse> t go to “tools”
ADFtools> pt print out entire directory tree structure
ADFtools> pt -l same, but include node label info
ADFtools> br go to “browse”
ADFbrowse> ls list children (sub-nodes) of current node
ADFbrowse> cd Base go down one level to the node named “Base”
ADFbrowse> dd give description of node data
ADFbrowse> pd print node data
ADFbrowse> cd .. go up one level in the tree
ADFbrowse> cd go to the top of the tree (to root node)
ADFbrowse> ? help
ADFbrowse> quit exits program

58

Appendix B. EXAMPLE COMPUTER CODES

The following computer codes are complete, workable versions of the codes mentioned
in the text of this User’s Guide (plus some that are not mentioned). They can be obtained
from the CGNS site at SourceForge (sourceforge.net/projects/cgns). They read and write
very simple example CGNS files, in order to help the user understand the CGNS concepts
as well as the usage of the API calls. Instructions for compiling them on UNIX systems is
contained in comment lines in each program. These assume that the user has obtained the
CGNS libraries (from the same website) and placed it locally as subdirectory /CGNSLib.
Most of the following codes are written in FORTRAN.

Note that these programs are very unsophisticated, purposefully for ease of readability.
Real working codes would be written more generally, with more checks, and would not
be as hardwired for particular cases. The codes are listed here by corresponding section.

STRUCTURED GRID

Section 2.1.1:

write grid str.f writes grid
write grid str.c writes grid (C-program example)
read grid str.f reads grid

Section 2.1.2:

write flowvert str.f writes vertex-based flow solution
read flowvert str.f reads vertex-based flow solution
write flowcent str.f writes cell centered flow solution
read flowcent str.f reads cell centered flow solution
write flowcentrind str.f writes cell centered flow solution with rind cells
read flowcentrind str.f reads cell centered flow solution with rind cells

Section 2.1.3:

write bc str.f writes PointRange boundary condition patches
read bc str.f reads PointRange boundary condition patches
write bcpnts str.f writes PointList boundary condition patches
read bcpnts str.f reads PointList boundary condition patches

Section 2.1.4:

write grid2zn str.f writes 2-zone grid
read grid2zn str.f reads 2-zone grid
write con2zn str.f writes 1-to-1 connectivity for 2-zone example
read con2zn str.f reads 1-to-1 connectivity for 2-zone example
write con2zn genrl str.f writes general 1-to-1 connectivity for 2-zone example
read con2zn genrl str.f reads general 1-to-1 connectivity for 2-zone example

59

UNSTRUCTURED GRID

Section 2.2.1:

write grid unst.f writes grid
read grid unst.f reads grid

Section 2.2.2:

write flowvert unst.f writes vertex-based flow solution
read flowvert unst.f reads vertex-based flow solution

Section 2.2.3:

write bcpnts unst.f writes PointList boundary condition patches (FaceCenter)
read bcpnts unst.f reads PointList boundary condition patches (FaceCenter)

GENERAL

Section 3.1:

write convergence.f writes convergence history
read convergence.f reads convergence history

Section 3.2:

write descriptor.f writes descriptor node under CGNSBase t
read descriptor.f reads descriptor node under CGNSBase t

Section 3.3:

write dimensional.f writes dimensional data to an existing grid + flow solution
read dimensional.f reads dimensional data from an existing grid + flow solution

Section 3.4:

write nondimensional.f writes nondimensional data to an existing CGNS file
read nondimensional.f reads nondimensional data from an existing CGNS file

Section 3.5:

write floweqn str.f writes flow equation information for structured example
read floweqn str.f reads flow equation information for structured example

Section 3.6:

write timevert str.f writes time-dependent flow soln (as Vertex) for structured example
read timevert str.f reads time-dependent flow soln (as Vertex) for structured example

60

Appendix C. OVERVIEW OF THE SIDS

C.1 The Big Picture

As mentioned in the Introduction, a CGNS file is organized into a set of “nodes” in
a tree-like structure, in much the same way as directories are organized in the UNIX
environment. Each node is identified by both a label and a name. Most node labels are
given by a series of characters followed by “ t”. There are generally very strict rules
governing the labeling conventions in a CGNS file. Node names are sometimes user-
defined, but sometimes must also follow strict naming conventions. The label identifies
a “type.” For example, Zone t identifies a Zone-type node, and DataArray t identifies a
type of node that contains a data array. The name identifies a specific instance of the
particular node type. For example, Density is the name of a node of type DataArray t

that contains an array of densities.

As you become more familiar with how CGNS files are organized, you will notice
that, generally, the higher you are in the CGNS hierarchy, the more important the label
is (names tend to be user-defined); whereas the lower you are in the hierarchy, the more
important the name is. This convention arises because at the higher levels, the broader
categories are established, and are used to determine “where to go” in the hierarchy. At
the lower levels, the category becomes less important because this is the region where
you are searching for specific items.

Throughout the remainder of this first section, we will primarily be referring to the
nodes by their label, because we are focusing on the “big picture.” In later sections, as
we get into specific examples, both names and labels will be referred to.

It is important to note at this point that the SIDS document specifies the layout of the
CGNS file, in terms of parents and children. However, when a given piece of information
is listed as being “under” a node, there are actually two possibilities: the information
can be stored as data in the current node, or it can be stored as data in or under a
separate child node. This distinction is illustrated in Fig. 22. The SIDS-to-ADF mapping
document [3] determines which of the two possibilities are used for each situation, and
must always be consulted along with the SIDS document. Throughout the remainder of
this appendix, the location of information (whether as data or as a separate child node)
will always be explicitly specified, according to the SIDS-to-ADF mapping document.

The remainder of this appendix attempts to summarize the most important and most
commonly-used aspects of the SIDS. It does not cover all possible nodes or situations. It
is intended as a general overview only. It is also likely that future extensions to the SIDS
will add additional capabilities beyond what we cover here.

The top, or entry-level, of the CGNS file is always what is referred to as the “root
node.” Children to be found directly under this node are the node CGNSLibraryVersion t

and one or more CGNSBase t nodes. The CGNSLibraryVersion t node has, as its data,
the version (release) number of the CGNS standard as defined by the SIDS. The CGNSBase t

61

Parent node
(data1 stored here)

Parent node
(no data stored here)

Child node
(data1 stored here)

Child node
(data2 stored here)

Child node
(data2 stored here)

(a) one set of data stored in parent node (b) all data stored in children nodes

Figure 22: Two possible treatments of a parent node with sets of data “under” it.

node represents the top level for a given database, or “case.” Most CGNS files will only
have one CGNSBase t node, although the SIDS allows for any number in order to remain
extensible and to allow for the possibility of having more than one “case” in a single file.
Here, the definition of “case” is left open. For the remainder of this appendix, we assume
that there is only one CGNSBase t node within a given CGNS file.

The CGNSBase t node may have, as its children, the following nodes: Zone t,
ConvergenceHistory t, BaseIterativeData t, SimulationType t, Family t, IntegralData t,
DataClass t, FlowEquationSet t, DimensionalUnits t, ReferenceState t, and Descriptor t.

The Zone t node gives information about a particular zone of the grid; most of
the data in the CGNS file is usually found under this node. Any number of Zone t

nodes is allowed at this level. Its children will be described in greater detail below.
ConvergenceHistory t contains solution history information typically output by many
CFD codes, such as residual, lift, drag, etc. as a function of iteration number. By conven-
tion, its name is GlobalConvergenceHistory. A ConvergenceHistory t node can exist
under the Zone t node as well, but there, its name is by convention ZoneConvergenceHistory.
BaseIterativeData t stores information relating to the times and/or iteration num-
bers for a database in which flow solutions and/or grids at multiple times are stored.
SimulationType t describes the type of simulation stored (i.e., TimeAccurate or NonTimeAccurate).
Family t is generally used to tie the grid to geometric CAD data, or to link certain en-
tities together as a common part (e.g., “wing,” “strut,” etc.). Any number of Family t

nodes is allowed.

The remaining nodes allowed under CGNSBase t are somewhat more generic, and

62

can exist at other levels in the hierarchy beside this one. They are briefly described
here. IntegralData t is a “catch-all” node for storing any desired sets of generic
data. Any number of IntegralData t nodes is allowed at this level. DataClass t

(which, by convention, has the name DataClass) indicates the form that the data in
the CGNSBase t is stored, for example: Dimensional, NormalizedByDimensional, or
NormalizedByUnknownDimensional. FlowEquationSet t (which, by convention, has the
name FlowEquationSet) defines the equations used in the CFD simulation. DimensionalUnits t

(which, by convention, has the name DimensionalUnits) defines the dimensional units
used (if any). ReferenceState t (which, by convention, has the name ReferenceState)
defines a reference state. This node is where quantities such as Reynolds number, Mach
number, and other reference quantities that define the flow field conditions and/or the
nondimensionalizations are stored. Finally, Descriptor t is used to store descriptor
strings. Any number of Descriptor t nodes is allowed at this level.

The data stored within the CGNSBase t node itself are the CellDimension and the
PhysicalDimension. The CellDimension is the dimensionality of the cells in the mesh
(e.g., 3 for volume cell, 2 for face cell). The PhysicalDimension is the number of
coordinates required to define a node position (e.g., 1 for 1-D, 2 for 2-D, 3 for 3-D). The
index dimension, which is the number of different indices required to reference a node
(e.g., 1=i, 2=i,j, 3=i,j,k), is not stored, but can be determined for each zone based on its
type (Structured or Unstructured). If Structured, the index dimension is the same
as CellDimension. If Unstructured, the index dimension is 1.

Much information can be stored under Zone t. Because this is an overview, we do
not go through it all here. Instead, we only highlight the features that most users are
likely to use. ZoneType t (which, by convention, has the name ZoneType) stores the
name Structured or Unstructured. GridCoordinates t is the parent node of the grid
coordinates arrays, such as CoordinateX, CoordinateY, and CoordinateZ. Any number
of GridCoordinates t nodes are allowed at this level (to handle the case of deforming
grids). By convention, the original grid coordinates has the name GridCoordinates.
FlowSolution t stores under it nodes which contain the flow solution; for example,
Density, VelocityX, VelocityY, VelocityZ, and Pressure. It also gives the location
at which the solution is stored (e.g., CellCenter, Vertex), and includes the possibility
for including Rind (ghost cell) information. Any number of FlowSolution t nodes are
allowed at this level. The Elements t data structure holds unstructured element data
such as connectivity, neighbors, etc. Any number of Elements t nodes are allowed at
this level. ZoneIterativeData t stores information necessary for a database in which
flow solutions at multiple times are stored. Other important nodes under Zone t are
ZoneBC t (which, by convention, has the name ZoneBC) and ZoneGridConnectivity t

(which, by convention, has the name ZoneGridConnectivity). These store the boundary
conditions and the grid connectivity information, respectively. More will be said about
these nodes later.

The data stored within the Zone t node itself are the VertexSize, the CellSize, and
the VertexSizeBoundary. These are dimensioned by the index dimension, and give the
number of vertices, the number of cells, and the number of boundary vertices (used for
sorted elements in unstructured zones only), respectively.

63

root node

CGNSLibraryVersion_t
(data=version number)

CGNSBase_t
(data=CellDimension
& PhysicalDimension)

Zone_t
(...)

Zone_t
(data=VertexSize,
CellSize, &
VertexSizeBoundary)

ConvergenceHistory_t
(data=no of iterations)

DataClass_t
(data=type)

ReferenceState_t

DataArray_t
(data=info)

DataArray_t
(...)

ZoneType_t
(data=type)GridCoordinates_t

DataArray_t
(data=coords)

FlowSolution_t

GridLocation_t
(data=location)

Rind_t
(data=rind info)

DataArray_t
(data=solution)

ZoneBC_t ZoneGridConnectivity_t

DataArray_t
(data=ref info)

DataArray_t
(...)

DataArray_t
(...)

DataArray_t
(...)

Figure 23: Hierarchical structure of a typical CGNS file (structured grid type).

64

An important point to note here is that the API sorts the Zone t nodes alphanumer-
ically according to their name when it reads them. This was deemed necessary because
most CFD codes currently perform operations on the zones of multiple-zone grids in a
certain order. To duplicate existing non-CGNS applications, it is necessary to insure that
zones can be read in the desired sequence. (ADF does not necessarily retrieve data in
the same order in which it was stored, so the API reader for zones was built to do this.)
Hence, when naming zones, the user should make sure they are named alphanumerically
(if an ordering is desired).

For example, the naming convention ZoneN, where N is the zone number, is alphanu-
meric only up to Zone9. Zone10 through Zone19 would get sorted between Zone1 and
Zone2, and so on. Spaces are allowed in names, so Zone N, with two spaces, (e.g.,
Zone 1, Zone 2,... Zone 99, Zone100,...) is alphanumeric up to Zone999. Other zone
naming conventions are certainly possible, and are completely up to the user to define
appropriately.

A summary graphic of the overall layout of a typical CGNS file is given in Fig. 23.
This figure shows the hierarchical data structure, and the relative locations of the nodes.
It also indicates (informally) what data, if any, is stored within each node. Note that all
possible nodes are not included here. In particular, note that Elements t nodes are not
shown under Zone t; the Elements t nodes would be present for an unstructured zone.
Also note that nodes that occur under ZoneBC t and ZoneGridConnectivity t have
been omitted; these will also be covered below. The optional node SimulationType t

(under CGNSBase t) is not included. And finally, note that multiple GridCoordinates t

and FlowSolution t nodes are allowed, but we show in the figure only one of each.
Multiple FlowSolution t nodes are usually only used in the situation when multiple
times of time-accurate data are stored, and multiple GridCoordinates t nodes are used
for deforming grids.

C.2 Implementation at the Lower Levels of the Hierarchy

Most of the actual data is at the lower levels of the CGNS hierarchy. We do not go into
great detail here; the examples in the main body of this document serve as instruction
for this. However, there are several general items of importance related to the storage of
data that are appropriate to mention here.

Many specific items, variables, and conditions that relate to CFD data are specified in
the SIDS. These are standardized names that must be used in order that other users will
understand what is in your CGNS file. For example, the static density must be called
Density. Any other name may not be recognized by other users. In fact, if another
application code expects “Density,” but you name it “density” (lower case “d”), then
chances are the other code’s search will fail.

Naturally, the items listed in the SIDS cannot cover all possible items required by
users. Hence, the SIDS allows for the use of the type UserDefined for any special type

65

not covered. For example, there are currently only a limited number of defined names
for turbulence models in the SIDS (e.g., OneEquation SpalartAllmaras). As everyone
knows, there are a huge number of turbulence models and turbulence model variants that
exist, so that the SIDS cannot hope to define standardized names for all of them. The
type UserDefined covers this situation.

When UserDefined is used, however, the user runs the risk that others will be unable
to interpret the CGNS file. We therefore recommend that whenever a UserDefined type
is unavoidable, the user also include a companion Descriptor t node to specify what
was done.

It is possible that, if certain items are found to be used more heavily as time goes on,
that standardized names may be created and added to the SIDS in the future.

C.3 Boundary Conditions

The boundary conditions hierarchical structure in CGNS can appear to be somewhat
daunting at first. Because the CGNS team decided to make the boundary condition
information as descriptive as possible and easily extensible to complex situations, there
are many layers possible in the hierarchy, and the usage rules can become complex.

However, the SIDS allows for use of simplified versions of the ZoneBC t node, which
are easier to understand and adopt. Essentially, the simplified versions “cut off” the
hierarchy at a higher level than the full-blown SIDS boundary condition description. The
implication of this is that application codes that use a simplified version must interpret
what is meant by each particular boundary condition type, without the help of the CGNS
file.

For example, the boundary condition type BCFarfield indicates a boundary condition
applied to a far field boundary. Most CFD codes have this type, which performs different
functions depending upon whether the local flow field is inflow or outflow, subsonic or
supersonic. The full-blown SIDS description of BCFarfield attempts to describe in some
detail the methodology involved in this boundary condition. However, if the user chooses
to use the minimal “cut off” version, the only information regarding the function of
the boundary condition that is stored in the CGNS file is the name BCFarfield. An
application code must determine from this name alone what is meant.

Example hierarchical structures for both the simplest implementation as well as the
full-blown implementation of the ZoneBC t node are shown in Fig. 24. (These hierarchies
make use of an IndexRange t node. It is also possible to use an IndexArray t, which
gives a complete list of boundary indices or elements, rather than a range.) Note that
an intermediate structure, where BCDataSet t and BCTypeSimple t are both given but
DirichletData and NeumannData are not, is also allowed.

Many boundary condition types are currently defined in the SIDS, but they by no
means cover all possible boundary conditions. The type UserDefined can be used for

66

ZoneBC_t

IndexRange_t
(data=index range)

ZoneBC_t

BC_t
(data=BCType)

BCDataSet_t
(data=BCTypeSimple)

DirichletData
(BCData_t)

NeumannData
(BCData_t)

DataArray_t
(data=BC quantities)

(a) lowest-level BC implementation
allowed (application code
interprets meaning of BCType)

(b) fully SIDS-compliant BC implementation

BC_t
(data=BCType)

BCDataSet_t
(data=BCTypeSimple)

IndexRange_t
(data=index range)

DataArray_t
(data=BC quantities)

Figure 24: General hierarchical structure of ZoneBC t.

any special type not covered that the user finds impossible to describe using the existing
SIDS. When UserDefined is used, a companion descriptor node is helpful to describe
what was done.

C.4 Zone Connectivity

It is often desirable to specify zone connectivity information when parts of a zone
connect with parts of another zone or itself. The connectivity information tells how
zones fit together or how a zone twists to reconnect with itself; the information is needed
by most CFD flow solvers.

There are three types of connectivity that can occur: point-by-point, patched, and
overset. The point-by-point, or 1-to-1, type occurs when the edges of zones abut, and
grid vertices from one patch exactly correspond with grid vertices from the other, with
no points missing a partner. The patched type occurs when the edges of zones abut, but
there is not a correspondence of the points, or they are not partnered with another point.
The overset type occurs when zones overlap one another (or a zone overlaps itself).

The SIDS allows for the specification of each of these types of zone connectivity under
the ZoneGridConnectivity t node. All three types can be implemented through the

67

general GridConnectivity t subnode (overset also requires the use of OversetHoles t

nodes). However, the 1-to-1 type can also utilize, in certain circumstances, the more
specific GridConnectivity1to1 t subnode.

Fig. 25 shows a sample hierarchy starting at the ZoneGridConnectivity t node,
for a 1-to-1 type of interface using a GridConnectivity1to1 t subnode. Note in this
figure that we now list the name, label, and data within each node. For this structure,
the naming convention at the bottom level is particularly important, and is actually
more descriptive than the labels. In fact, the label for the Transform node is very
strange, and does not even follow the usual “ t” convention. As can be seen in the figure,
multiple nodes are allowed under the ZoneGridConnectivity t node. These can be
any combination of GridConnectivity1to1 t, GridConnectivity t, OversetHoles t,
or Descriptor t nodes.

Name=ZoneGridConnectivity
Label=ZoneGridConnectivity_t
Data=<None>

Name=<User defined>
Label=GridConnectivity1to1_t
Data=ZoneDonorName

Name=Transform
Label="int[IndexDimension]"
Data=transform values

Name=PointRangeDonor
Label=IndexRange_t
Data=index range

Name=PointRange
Label=IndexRange_t
Data=index range

Figure 25: Hierarchical structure of ZoneGridConnectivity t for a 1-to-1 interface.

A sample hierarchy (again starting at the ZoneGridConnectivity t node) is shown
in Fig. 26 for an overset interface using a GridConnectivity t subnode. The case for a
patched interface would look the same, except there would be no OversetHoles t node or
its children and GridConnectivityType would be Abutting. Note that CellListDonor
and InterpolantsDonor are used for patched or overset interfaces. (PointListDonor
can be used in their place if the interface is 1-to-1.) See [1] [3] for details.)

68

Name=ZoneGridConnectivity
Label=ZoneGridConnectivity_t
Data=<None>

Name=<User defined>
Label=GridConnectivity_t
Data=ZoneDonorName

Name=GridConnectivityType
Label=GridConnectivityType_t
Data=OversetName=PointList

Label=IndexArray_t
Data=vector of points

Name=<User defined>
Label=OversetHoles_t
Data=<none>

Name=CellListDonor
Label=IndexArray_t
Data=donor cells

Name=InterpolantsDonor
Label=DataArray_t
Data=donor interpolants

Name=PointList
Label=IndexArray_t
Data=receiver points

Name=GridLocation
Label=GridLocation_t
Data=location of receiver

pts relative to grid

Name=GridLocation
Label=GridLocation_t
Data=location of hole

pts relative to grid

Figure 26: Hierarchical structure of ZoneGridConnectivity t for an overset interface.

C.5 Structured Zone Example

The following is an example for a structured grid. It corresponds with example 8-A
in the SIDS document [1]. It is a 3-D two-zone case, where the two zones are connected
in a 1-to-1 fashion at one of each of their faces. Zone 1 is 9 × 17 × 11 and zone 2 is
9× 17× 21. The k-max face of zone 1 abuts the k-min face of zone 2.

The hierarchy is shown in Figs. 27 through 30. Only directly relevant parts of the
hierarchy are shown here for clarity. For example, DataClass t, ReferenceState t,
ConvergenceHistory t, FlowEquationSet t, and ZoneBC t have all been left off. How-
ever, these (and other) items are not required, and the figure still represents a valid
SIDS-compliant CGNS file. Note that a data type of MT indicates that there is no data
stored in the node.

In this example, the flow solution in zone 1 is given at cell centers, whereas the flow
solution in zone 2 is given at the vertices (see Fig. 29). In other words, the zone 1 solution
points do not correspond with the grid points (as they do in zone 2). They are defined
within the volumes surrounded by the grid points. This example is constructed this way
for the purpose of illustration, but it is unusual; typically one would use only a single
flow solution data location for the entire file.

This example also illustrates the use of the Rind t node, and how it affects the data
arrays under a FlowSolution t. A rind node under FlowSolution t is used to indicate
that the flow solution is outputting additional rind or “ghost” data outside one or more

69

root node

Name=CGNSLibraryVersion
Label=CGNSLibraryVersion_t
Data=(version number)

Name=Flat Plate (user defined)
Label=CGNSBase_t
Data=CellDimension=3,

PhysicalDimension=3

Name=Zone2 (user defined)
Label=Zone_t
Data=VertexSize=(9,17,21),

CellSize=(8,16,20),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=My Soln (user defined)
Label=FlowSolution_t
Data=MT

Name=ZoneGridConnectivity
Label=ZoneGridConnectivity_t
Data=MT

Name=Zone1 (user defined)
Label=Zone_t
Data=VertexSize=(9,17,11),

CellSize=(8,16,10),
VertexSizeBoundary=(0,0,0)

Name=ZoneType
Label=ZoneType_t
Data=Structured

Name=GridCoordinates
Label=GridCoordinates_t
Data=MT

Name=My Soln (user defined)
Label=FlowSolution_t
Data=MT

Name=ZoneGridConnectivity
Label=ZoneGridConnectivity_t
Data=MT

E F

C

A B

D

Figure 27: CGNS top levels for a case composed of 2 structured zones.

B

Name=CoordinateZ
Label=DataArray_t
Data=z2(1,1,1) to z2(9,17,21)

Name=CoordinateX
Label=DataArray_t
Data=x2(1,1,1) to x2(9,17,21)

Name=CoordinateY
Label=DataArray_t
Data=y2(1,1,1) to y2(9,17,21)

A

Name=CoordinateX
Label=DataArray_t
Data=x1(1,1,1) to x1(9,17,11)

Name=CoordinateY
Label=DataArray_t
Data=y1(1,1,1) to y1(9,17,11)

Name=CoordinateZ
Label=DataArray_t
Data=z1(1,1,1) to z1(9,17,11)

Figure 28: GridCoordinate t nodes of structured zone example.

70

D

C

Name=GridLocation
Label=GridLocation_t
Data=Vertex

Name=Pressure
Label=DataArray_t
Data=p2(1,1,1) to p2(9,17,21)

Name=Rind
Label=Rind_t
Data=(0,0,1,1,3,2)

Name=GridLocation
Label=GridLocation_t
Data=CellCenter

Name=Pressure
Label=DataArray_t
Data=p1(1,0,-2) to p(8,17,12)

Figure 29: FlowSolution t nodes of structured zone example.

F

E

Name=Transform
Label="int[IndexDimension]"
Data=(1,2,3)

Name=KMin (user defined)
Label=GridConnectivity1to1_t
Data=Zone1

Name=PointRangeDonor
Label=IndexRange_t
Data=(1,1,11)(9,17,11)

Name=PointRange
Label=IndexRange_t
Data=(1,1,1)(9,17,1)

Name=KMax (user defined)
Label=GridConnectivity1to1_t
Data=Zone2

Name=Transform
Label="int[IndexDimension]"
Data=(1,2,3)

Name=PointRange
Label=IndexRange_t
Data=(1,1,11)(9,17,11)

Name=PointRangeDonor
Label=IndexRange_t
Data=(1,1,1)(9,17,1)

Figure 30: ZoneGridConnectivity t nodes of structured zone example.

71

boundaries of the zone. (A rind node can also be used under GridCoordinates t and
DiscreteData t.) See the SIDS document [1] for a more complete description. In zone
1 in this example, there are no additional ghost cell data in the i-direction, there is one
ghost cell next to each of j-min and j-max, and there are 3 ghost cells next to k-min and
2 next to k-max. (Admittedly, this example is very contrived - most applications would
be more consistent in their use of rind cells.) Because of the rind cells, the i, j, and k
ranges of all flow solution data arrays in zone 1 are extended appropriately.

It is very important for the user to realize that including rind cells affects how the data
is stored in the DataArray t’s. In other words, when reading a CGNS file one cannot
ignore Rind t nodes if they are present, and attempting to read the DataArray t’s using
unmodified VertexSize or CellSize dimensions will result in the retrieval of nonsensical
data.

Note that the SIDS specifies many defaults. For example, the default Transform

values are (1,2,3), and the default GridLocation is Vertex. Hence, the nodes that contain
these particular values in the example are not strictly necessary. The API sometimes
leaves out default information.

Another important fact is illustrated in this example. When the names of a type of
node (of given label) are user defined, the names must be different if they have the same
parent node. For example, the two Zone t nodes in this example must have different
names (recall the earlier discussion of zone naming). However, if they are located in
different places in the hierarchy, two nodes with the same label can have the same name.
For example, both of the FlowSolution t nodes, located in two different zones, have
been given the same user-defined name: “My Soln” in the example.

Finally, although the ZoneBC t nodes were not included in this example, note that if
they were, they should describe the boundary conditions on all boundary faces except the
k-max face of zone 1 and the k-min face of zone 2. These two faces would not be included
in the boundary conditions because they are already defined as connectivity interfaces.

72

Appendix D. GUIDELINE FOR PLOT3D VARIABLES

The broad scope of CGNS allows users to essentially put anything into a CGNS file.
While this is useful from the perspective of extensibility, it also makes it more difficult
to read someone else’s CGNS file without an elaborate array of checks and translators.
This is true not only because of the many choices of variables to output, but also because
CGNS allows many forms of dimensional and nondimensional data.

Many people in the CFD community currently output flow field data in PLOT3D
format [7], particularly for use in postprocessing visualization programs. It has, in some
sense, become a de facto standard for sharing CFD data. Because this format is so widely
used, we give a guideline in this appendix for outputting and reading this type of data
in a CGNS file. If you follow this guideline, then it is more likely that other users will be
able to easily read and interpret your CGNS files.

The PLOT3D standard grid variables are (in 3-D) x, y, and z. These coordinates
may be dimensional or nondimensional. To follow this guideline, the three coordinates
CoordinateX, CoordinateY, and CoordinateZ (either dimensional or nondimensional)
must be given. There also may be “iblank” information, associated with overset grids.
If used, the list of overset holes is stored under OversetHoles t nodes (see the SIDS
document [1]). This appendix does not cover the various dimensionalization and nondi-
mensionalization options for the grid coordinates. By and large, from the point of view
of portability, the issue of units and/or nondimensionalization for grid coordinates is not
as crucial as it is for the “Q” variables, which is covered in great detail below. However,
one should follow the SIDS standard and appropriately define within the CGNS file the
grid’s units or nondimensionalizations used.

The PLOT3D standard “Q” variables are (in 3-D):

ρ/ρref = nondimensional density

ρu/(ρrefaref) = nondimensional x-momentum

ρv/(ρrefaref) = nondimensional y-momentum

ρw/(ρrefaref) = nondimensional z-momentum

ρe0/(ρrefa
2
ref) = nondimensional total energy per unit volume

where a is the speed of sound and ref indicates a reference state. Standard PLOT3D
Q files also specify a reference Mach number, Reynolds number, angle of attack, and
time value. For the purposes of this discussion, the time value will not be addressed.
CGNS does have the capability for storing time-accurate data if needed (see section 3.6),
but time-accurate data is not covered in this PLOT3D guideline. We include below the
CGNS convention for storing Mach number, Reynolds number, and (indirectly) angle of
attack.

Each of the 5 flow field variables above has a standard name, defined in the SIDS. They
are, respectively: Density, MomentumX, MomentumY, MomentumZ, and EnergyStagnationDensity.
To follow this guideline, these are the 5 variables that should be output to your CGNS
file (in 3-D), and are also the ones that you should expect to read, given someone else’s

73

CGNS file, if they are following this guideline.

Multiple bases are allowed in CGNS, but, to further enhance portability of PLOT3D-
like datasets, only one CGNSBase t node is recommended under this guideline. In other
words, multiple cases (such as different angles of attack) should be stored in separate
CGNS files with single bases, rather than in a single file with multiple bases.

The three most common types of data that one may output in a CGNS file are:

DataClass = Dimensional

DataClass = NormalizedByDimensional

DataClass = NormalizedByUnknownDimensional

The first category indicates that the data has dimensional units. The second category
indicates that the data has been nondimensionalized by known reference values, which are
specified in the CGNS file. The third category indicates that the data is nondimensional,
but the reference values are unspecified or unknown. Because CGNS deals with each of
these in a slightly different way, we will give the guideline for each of these three classes
in separate subsections.

D.1 Dimensional Data

To output dimensional data:

1. Under CGNSBase t, set DataClass = Dimensional.

2. Under CGNSBase t, put a ReferenceState; and under ReferenceState, put the
dimensional reference values of Density and VelocitySound. Under this guide-
line, the units of these must be consistent with one another and with the units
of Density, MomentumX, MomentumY, MomentumZ, and EnergyStagnationDensity

given under FlowSolution (e.g., all MKS units). Also under ReferenceState, put
Mach, Reynolds, VelocityX, VelocityY, and VelocityZ.

3. Under FlowSolution, put the dimensional variables Density, MomentumX, MomentumY,
MomentumZ, and EnergyStagnationDensity. Under this guideline, the units of
these 5 variables must be consistent with one another and with the units of Density
and VelocitySound in ReferenceState.

To read dimensional data (i.e., if DataClass = Dimensional under CGNSBase t):

1. Under ReferenceState (directly under CGNSBase t), read Density, VelocitySound,
Mach, and Reynolds. Also read VelocityX, VelocityY, and VelocityZ if an angle
of attack of the reference state is needed.

2. Under FlowSolution, read Density, MomentumX, MomentumY, MomentumZ, and
EnergyStagnationDensity.

74

3. To obtain the PLOT3D Q variables, do the following:

ρ/ρref = Density / Density(ref)

ρu/(ρrefaref) = MomentumX / (Density(ref) * VelocitySound(ref))

ρv/(ρrefaref) = MomentumY / (Density(ref) * VelocitySound(ref))

ρw/(ρrefaref) = MomentumZ / (Density(ref) * VelocitySound(ref))

ρe0/(ρrefa
2
ref) = EnergyStagnationDensity / (Density(ref) * VelocitySound(ref)2)

D.2 NormalizedByDimensional Data

To output nondimensional data with known normalizations:

1. Under CGNSBase t, set DataClass = NormalizedByDimensional.

2. Under CGNSBase t, put a ReferenceState; and under ReferenceState, put Mach,
Reynolds, VelocityX, VelocityY, and VelocityZ. Then put either:

• The dimensional reference values of Density and VelocitySound. Under this
guideline, the units of these must be consistent with one another and with
the units of the raw (dimensional) data Density, MomentumX, MomentumY,
MomentumZ, and EnergyStagnationDensity given under FlowSolution, prior
to normalization.

• The nondimensional reference values of Density and VelocitySound, along
with their corresponding ConversionScale and ConversionOffset values.
Under this guideline, the units of the raw (dimensional) Density and VelocitySound,
prior to normalization using ConversionScale and ConversionOffset, must
be consistent with one another and with the units of the raw (dimensional) data
Density, MomentumX, MomentumY, MomentumZ, and EnergyStagnationDensity

given under FlowSolution, prior to normalization.

3. Under FlowSolution, put the nondimensional variables Density, MomentumX, MomentumY,
MomentumZ, and EnergyStagnationDensity, along with their corresponding ConversionScale
and ConversionOffset values. Under this guideline, the units of the raw (dimen-
sional) variables, prior to normalization using ConversionScale and ConversionOffset,
must be consistent with one another and with the units of the raw (dimensional)
Density and VelocitySound in ReferenceState.

To read nondimensional data with known normalizations (i.e., if DataClass =

NormalizedByDimensional under CGNSBase t):

1. Under ReferenceState (directly under CGNSBase t), read Density and VelocitySound.
Also read their ConversionScale and ConversionOffset values if they are present.
Additionally, read Mach and Reynolds. Also read VelocityX, VelocityY, and
VelocityZ if an angle of attack of the reference state is needed.

75

2. Under FlowSolution, read Density, MomentumX, MomentumY, MomentumZ, and
EnergyStagnationDensity. Also read each ConversionScale and ConversionOffset.

3. To obtain the PLOT3D Q variables, do the following. First, only if they were given
as nondimensional quantities (indicated by a ’ below), recover the raw (dimen-
sional) reference values of Density and VelocitySound, via:

Density(ref) = Density’(ref)*ConversionScale + ConversionOffset

VelocitySound(ref) = VelocitySound’(ref)*ConversionScale + ConversionOffset

Then do:

ρ/ρref = (Density*ConversionScale + ConversionOffset) / Density(ref)

ρu/(ρrefaref) = (MomentumX*ConversionScale + ConversionOffset) / (Density(ref)
* VelocitySound(ref))

ρv/(ρrefaref) = (MomentumY*ConversionScale + ConversionOffset) / (Density(ref)
* VelocitySound(ref))

ρw/(ρrefaref) = (MomentumZ*ConversionScale + ConversionOffset) / (Density(ref)
* VelocitySound(ref))

ρe0/(ρrefa
2
ref) = (EnergyStagnationDensity*ConversionScale + ConversionOffset)

/ (Density(ref) * VelocitySound(ref)2)

Note that it is possible that the conversion scale and offset for the PLOT3D Q variables
may correspond to the reference conditions. This would imply that the variables could
be directly output, without the above conversions needed. However, CGNS allows the
variables to be normalized by properties independent of the reference conditions, so the
above procedure is recommended to avoid ambiguity.

D.3 NormalizedByUnknownDimensional Data

To output nondimensional data with unknown normalizations:

1. Under CGNSBase t, set DataClass = NormalizedByUnknownDimensional.

2. Under CGNSBase t, put a ReferenceState; and under ReferenceState, put Density
= 1 and VelocitySound = 1. Also, put Mach, Reynolds, VelocityX, VelocityY,
and VelocityZ.

3. Under FlowSolution, put the nondimensional variables Density, MomentumX, MomentumY,
MomentumZ, and EnergyStagnationDensity. These must be nondimensionalized
as: ρ/ρref , ρu/(ρrefaref), ρv/(ρrefaref), ρw/(ρrefaref), ρe0/(ρrefa

2
ref).

(Setting Density = 1 and VelocitySound = 1 in the ReferenceState defines the par-
ticular nondimensionalization defined above for the PLOT3D variables; see the SIDS

76

document [1] for details and other examples.) To read nondimensional data with un-
known normalizations (i.e., if DataClass = NormalizedByUnknownDimensional under
CGNSBase t):

1. Check under ReferenceState (directly under CGNSBase t), to be sure that Density
= 1 and VelocitySound = 1. Then, read Mach and Reynolds. Also read VelocityX,
VelocityY, and VelocityZ if an angle of attack of the reference state is needed.

2. Under FlowSolution, read Density, MomentumX, MomentumY, MomentumZ, and
EnergyStagnationDensity.

Nothing needs to be done in this case to obtain the PLOT3D Q variables. They are
already in the correct form.

D.4 Notes

1. In addition to the flow field variables Density, MomentumX, MomentumY, MomentumZ,
and EnergyStagnationDensity (under FlowSolution), you may also output ad-
ditional variables if desired, but be sure these 5 are present.

2. Other reference values may also be placed under ReferenceState (for example,
LengthReference may be needed to define the reference length associated with the
grid coordinates), but the use of Density and VelocitySound is sufficient to define
the nondimensionalizations of the PLOT3D Q variables.

3. The quantities Mach, Reynolds, VelocityX, VelocityY, VelocityZ, Density, and
VelocitySound (plus anything else) under ReferenceState must all represent the
same reference state of the flow. For external aerodynamics, this is usually taken
to be the free stream, but it does not have to be.

4. The velocity components are used, in the PLOT3D sense, solely to provide an
angle of attack of the flow field at the reference state. The definition of angle of
attack itself is non-unique in 3-D, so there is therefore no SIDS standard for it. For
example, one possible set of angle definitions assumes that the z-direction is “up,”
and uses:

u = V cosβcosα

v = −V sinβ

w = V cosβsinα

where V =
√

u2 + v2 + w2, α is angle of attack, and β is angle of sideslip. Thus,
an angle of attack can be obtained using α = tan−1(w/u), where u = VelocityX

and w = VelocityZ.

77

5. When reading someone else’s CGNS file, a low-level approach to interpret and/or
use it appropriately would be the following. First, check to see that there is only
one CGNSBase t node. (As discussed above, multiple bases are allowed in gen-
eral, but under this guideline only one base should exist.) Second, insure that the
variables CoordinateX, CoordinateY, and CoordinateZ exist under each zone’s
GridCoordinates t node, and that the variables Density, MomentumX, MomentumY,
MomentumZ, and EnergyStagnationDensity exist under each zone’s FlowSolution t

node. (Note: for time-accurate datasets there may be multiple GridCoordinates t

and FlowSolution t nodes under each zone – see section 3.6 – but this situation is
not covered under the current PLOT3D guideline.) Then, search for the following
characteristics in the file:

• If DataClass = Dimensional, then ReferenceState (directly under CGNSBase t)
must contain Density, VelocitySound, Mach, and Reynolds. VelocityX,
VelocityY, and VelocityZ are needed under ReferenceState only if a refer-
ence angle of attack is required.

• If DataClass = NormalizedByDimensional, then ReferenceState (directly
under CGNSBase t) must contain Density, VelocitySound, Mach, and Reynolds.
VelocityX, VelocityY, and VelocityZ are needed under ReferenceState

only if a reference angle of attack is required. Furthermore, a ConversionScale
and ConversionOffset must exist for each of the 5 flow field variables under
FlowSolution. ConversionScale and ConversionOffset may or may not
exist for the variables under ReferenceState.

• If DataClass = NormalizedByUnknownDimensional, then ReferenceState

(directly under CGNSBase t) must contain Density = 1, VelocitySound = 1,
as well as Mach, and Reynolds. VelocityX, VelocityY, and VelocityZ are
needed under ReferenceState only if a reference angle of attack is required.

If these conditions are met, then a low-level reader could assume that the guidelines
outlined in the above subsections were followed, and the PLOT3D variables could
easily be obtained using the procedures given. A more advanced reader would
probably check for consistency in the dimensions and conversion scales, to ensure
compliance with the guidelines.

References

[1] CGNS Project Group, “The CFD General Notation System Stan-
dard Interface Data Structures,” Version 2.0 beta 2, February 2001;
http://www.grc.nasa.gov/www/cgns/sids/index.html

[2] CGNS Project Group, “The CFD General Notation Sys-
tem Advanced Data Format (ADF) User’s Guide,” April 2001;
http://www.grc.nasa.gov/www/cgns/adf/index.html

78

[3] CGNS Project Group, “The CFD General Notation System SIDS-to-
ADF File Mapping Manual,” Version 1.2 revision 8, February 2001;
http://www.grc.nasa.gov/www/cgns/filemap/index.html

[4] Poirier, D. M. A., Allmaras, S., McCarthy, D. R., Smith, M., and Enomoto, F., “The
CGNS System,” AIAA Paper 98-3007, June 1998.

[5] CGNS Project Group, “The CFD General Notation System Mid-Level Library,”
July 2001; http://www.grc.nasa.gov/www/cgns/midlevel/index.html

[6] Poirier, D. M. A., Bush, R. H., Cosner, R. R., Rumsey, C. L., and McCarthy, D. R.,
“Advances in the CGNS Database Standard for Aerodynamics and CFD,” AIAA
Paper 2000-0681, January 2000.

[7] Walatka, P. P., Buning, P. G., Pierce, L., Elson, P. A., “PLOT3D User’s Guide,”
NASA TM 101067, March 1990.

79

	INTRODUCTION
	What is CGNS?
	Why CGNS?
	What is a CGNS File?
	How this User's Guide is Organized

	GETTING STARTED
	Structured Grid
	Single-Zone Structured Grid
	Single-Zone Structured Grid and Flow Solution
	Single-Zone Structured Grid with Boundary Conditions
	Multi-Zone Structured Grid with 1-to-1 Connectivity

	Unstructured Grid
	Single-Zone Unstructured Grid
	Single-Zone Unstructured Grid and Flow Solution
	Single-Zone Unstructured Grid with Boundary Conditions

	ADDITIONAL INFORMATION
	Convergence History
	Descriptor Nodes
	Dimensional Data
	Nondimensional Data
	Flow Equation Sets
	Time-Dependent Data
	Using Links

	TROUBLESHOOTING
	Handling Errors
	Known Problems

	FREQUENTLY ASKED QUESTIONS
	THE ADFEDIT UTILITY
	EXAMPLE COMPUTER CODES
	OVERVIEW OF THE SIDS
	The Big Picture
	Implementation at the Lower Levels of the Hierarchy
	Boundary Conditions
	Zone Connectivity
	Structured Zone Example

	GUIDELINE FOR PLOT3D VARIABLES
	Dimensional Data
	NormalizedByDimensional Data
	NormalizedByUnknownDimensional Data
	Notes

